Skip to main content

Advertisement

Log in

A neurally plausible model of the dynamics of motion integration in smooth eye pursuit based on recursive Bayesian estimation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this study, we describe a model of motion integration in smooth eye pursuit based on a recursive Bayesian estimation process, which displays a dynamic behaviour qualitatively similar to the dynamics of the motion integration process observed experimentally, both psychophysically in humans and monkeys, and physiologically in monkeys. By formulating the model as an approximate version of a Kalman filter algorithm, we have been able to show that it can be put into a neurally plausible, distributed recurrent form which coarsely corresponds to the recurrent circuitry of visual cortical areas V1 and MT. The model thus provides further support for the notion that the motion integration process is based on a form of Bayesian estimation, as has been suggested by many psychophysical studies, and moreover suggests that the observed dynamic properties of this process are the result of the recursive nature of the motion estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300: 523–525

    Article  CAS  PubMed  Google Scholar 

  • Barthelemy FV, Perrinet LU, Castet E, Masson GS (2008) Dynamics of distributed 1D and 2D motion representations for short latency ocular following. Vision Res 48: 501–522

    Article  PubMed  Google Scholar 

  • Bayerl P, Neumann H (2004) Disambiguating visual motion through contextual feedback modulation. Neural Comp 16: 2041–2066

    Article  Google Scholar 

  • Born RT, Groh JM, Zhao R, Lukasewycz SJ (2000) Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26: 725–734

    Article  CAS  PubMed  Google Scholar 

  • Born RT, Pack CC, Ponce CR, Si Yi (2006) Temporal evolution of 2-dimensional direction signals used to guide eye movements. J Neurophysiol 95: 284–300

    PubMed  Google Scholar 

  • Born RT, Pack CC, Zhao R (2002) Integration of motion cues for the initiation of smooth pursuit eye movements. Prog Brain Res 140: 225–237

    Article  PubMed  Google Scholar 

  • Bowns L (1996) Evidence for a feature tracking explanation of why type II plaids move in the vector sum directions at short durations. Vision Res 36: 3685–3694

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Wenderoth P (1993) The effect of interactions between one dimensional component gratings on two dimensional motion perception. Vision Res 33: 343–350

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17: 8621–8644

    CAS  PubMed  Google Scholar 

  • Donnelly M, Bowd C, Patterson R (1997) Direction discrimination of cyclopean (stereoscopic) and luminance motion. Vision Res 37(15): 2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Fennema CL, Thompson W (1979) Velocity determination in scenes containing several moving objects. Comput Graph Image Process 9: 301–315

    Article  Google Scholar 

  • Groh JH, Born RT, Newsome WT (1997) How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J Neurosci 17: 4312–4330

    CAS  PubMed  Google Scholar 

  • Grossberg S, Mingolla E, Viswanathan L (2001) Neural dynamics of motion integration and segmentation within and across apertures. Vision Res 41: 2521–2553

    Article  CAS  PubMed  Google Scholar 

  • Heeger DJ, Simoncelli EP (1993) Model of visual motion sensing. In: Harris L, Jenkin M (eds) Spatial vision in humans and robots. Cambridge University Press, pp 367–92

  • Hupé JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85: 134–145

    PubMed  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35–45

    Google Scholar 

  • Koechlin E, Anton JL, Burnod Y (1999) Bayesian inference in populations of cortical neurons: a model of motion integration and segmentation in area MT. Biol Cybern 80: 25–44

    Article  CAS  PubMed  Google Scholar 

  • Komatsu H, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60: 580–603

    CAS  PubMed  Google Scholar 

  • Komatsu H, Wurtz RH (1989) Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. J Neurophysiol 62: 31–47

    CAS  PubMed  Google Scholar 

  • Lidén L, Pack C (1999) The role of terminators and occlusion cues in motion integration and segmentation: a neural network model. Vision Res 39: 3301–3320

    Article  PubMed  Google Scholar 

  • Linder A, Ilg UW (2000) Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli. Exp Brain Res 133: 450–456

    Article  Google Scholar 

  • Lisberger SG, Westbrook LE (1985) Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. J Neurosci 5: 1662–1673

    CAS  PubMed  Google Scholar 

  • Livingstone MS, Pack CC, Born RT (2001) Two-dimensional substructure of MT receptive fields. Neuron 30: 781–793

    Article  CAS  PubMed  Google Scholar 

  • Löffler G, Orbach HS (1999) Computing feature motion without feature detectors: a model for terminator motion without end-stopped cells. Vision Res 39: 859–871

    Article  PubMed  Google Scholar 

  • Lorenceau J, Shiffrar M, Wells N, Castet E (1993) Different motion sensitive units are involved in recovering the direction of moving lines. Vision Res 33: 1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc Lond B Biol Sci 211: 151–180

    Article  CAS  PubMed  Google Scholar 

  • Masson GS, Castet E (2002) Parallel motion processing for the initiation of short-latency ocular following in humans. J Neurosci 22: 5149–5163

    CAS  PubMed  Google Scholar 

  • Masson GS, Rybarczyk Y, Castet E, Mestre DR (2000) Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies. Vis Neurosci 17: 753–767

    Article  CAS  PubMed  Google Scholar 

  • Masson GS, Stone LS (2002) From following edges to pursuing objects. J Neurophysiol 88: 2869–2873

    Article  PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563–2586

    CAS  PubMed  Google Scholar 

  • Montagnini A, Mamassian P, Perrinet L, Castet E, Masson GS (2007) Bayesian modeling of dynamic motion integration. J Physiol Paris 101: 64–77

    Article  PubMed  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns. Pattern recognition mechanisms. In: Chagas C, Gattass R, Gross C (eds) Pontificiae Academiae Scientiarum Scripta Varia, vol 54, pp 117–151. Vatican Press, Rome (Reprinted in Exp Brain Res, Supplementum 11: 117–151, 1986)

  • Pack CC, Born RT (2001) Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409: 1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Pack CC, Gartland AJ, Born RT (2004) Integration of contour and terminator signals in visual area MT. J Neurosci 24: 3268–3280

    Article  CAS  PubMed  Google Scholar 

  • Pack CC, Livingstone MS, Duffy KR, Born RT (2003) End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39: 671–680

    Article  CAS  PubMed  Google Scholar 

  • Patterson R, Bowd C, Donnelly M (1998) The cyclopean (stereoscopic) barber pole illusion. Vision Res 38: 2119–2125

    Article  CAS  PubMed  Google Scholar 

  • Polat U, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM (1998) Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391: 580–584

    Article  CAS  PubMed  Google Scholar 

  • Raiguel SE, Lagae L, Gulya SB, Orban GA (1989) Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res 493: 155–159

    Article  CAS  PubMed  Google Scholar 

  • Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Comp 16: 1–38

    Article  Google Scholar 

  • Rockland A, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425: 345–368

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9: 1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast’s effect on spatial summation by macaque V1 neurons. Nat Neurosci 2: 733–739

    Article  CAS  PubMed  Google Scholar 

  • Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85: 1873–1887

    CAS  PubMed  Google Scholar 

  • Schmolesky MT, Youngchang Wang, Hanes DP, Thompson KG, Leutgeb S, Schall JD (1998) Signal timing across the macaque visual system. J Neurophysiol 79: 3272–3278

    CAS  PubMed  Google Scholar 

  • Shibata T, Tabata H, Schaal S, Kawato M (2005) A model of smooth pursuit based on learning of the target dynamics using only retinal signals. Neural Netw 18: 213–225

    Article  PubMed  Google Scholar 

  • Shipp S, Zeki S (1989) The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci 1: 309–332

    Article  CAS  PubMed  Google Scholar 

  • Simoncelli EP (2003) Local analysis of visual motion. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 1616–1623

    Google Scholar 

  • Simoncelli E, Adelson E, Heeger D (1991) Probability distributions of optical flow. In: Proceedings of IEEE Conference on Computer Vision Pattern Recoginition, IEEE, Washington DC, pp 310–15

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38: 743–761

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Majaj NJ, Movshon JA (2005) Dynamics of motion signaling by neurons in macaque area MT. Nature Neurosci 8: 220–228

    Article  CAS  PubMed  Google Scholar 

  • Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9: 578–585

    Article  CAS  PubMed  Google Scholar 

  • Stone L, Thompson P (1990) Human speed perception is contrast dependent. Vision Res 32: 1535–1549

    Article  Google Scholar 

  • Stone L, Watson A, Mulligan J (1990) Effect of contrast on the perceived direction of a moving plaid. Vision Res 30: 1049–1067

    Article  CAS  PubMed  Google Scholar 

  • Van Essen D, Maunsell J, Bixby J (1981) The middle temporal visual area in macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199: 292–326

    Article  Google Scholar 

  • Wallace JM, Stone LS, Masson GS (2005) Object motion computation for the initiation of smooth pursuit eye movements in humans. J Neurophysiol 93: 2279–2293

    Article  PubMed  Google Scholar 

  • Wallach H (1935) Über visuell wahrgenommene Bewegungsrichtung. Psychol Forsch 20: 325–380

    Article  Google Scholar 

  • Weiss E, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5: 598–604

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR, Ferrera VP, Yo C (1992) A psychophysically motivated model for two-dimensional motion perception. Visual Neurosci 9: 79–97

    Article  CAS  Google Scholar 

  • Wuerger S, Shapley R, Rubin N (1996) On the visually perceived direction of motion by Hans Wallach: 60 years later. Perception 25: 1317–1367

    Article  Google Scholar 

  • Yo C, Wilson H (1992) Moving two-dimensional patterns can capture the perceived directions of lower or higher spatial frequency gratings. Vision Res 32: 1263–1270

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kameliya Dimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimova, K., Denham, M. A neurally plausible model of the dynamics of motion integration in smooth eye pursuit based on recursive Bayesian estimation. Biol Cybern 100, 185–201 (2009). https://doi.org/10.1007/s00422-009-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0291-z

Keywords

Navigation