Skip to main content
Log in

Experiments and models of sensorimotor interactions during locomotion

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

During locomotion sensory information from cutaneous and muscle receptors is continuously integrated with the locomotor central pattern generator (CPG) to generate an appropriate motor output to meet the demands of the environment. Sensory signals from peripheral receptors can strongly impact the timing and amplitude of locomotor activity. This sensory information is gated centrally depending on the state of the system (i.e., rest vs. locomotion) but is also modulated according to the phase of a given task. Consequently, if one is to devise biologically relevant walking models it is imperative that these sensorimotor interactions at the spinal level be incorporated into the control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelew TA, Miller MD, Cope TC, Nichols TR (2000) Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat. J Neurophysiol 84:2709–2714

    CAS  PubMed  Google Scholar 

  • Abraham LD, Marks WB, Loeb GE (1985) The distal hindlimb musculature of the cat. Cutaneous reflexes during locomotion. Exp Brain Res 58:594–603

    Article  CAS  PubMed  Google Scholar 

  • Andersen JB, Sinkjaer T (1999) The stretch reflex and H-reflex of the human soleus muscle during walking. Motor Control 3:151–157

    CAS  PubMed  Google Scholar 

  • Anderson JH (1974) Dynamic characteristics of Golgi tendon organs. Brain Res 67:531–537

    Article  CAS  PubMed  Google Scholar 

  • Andersson O, Grillner S (1981) Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion” Acta Physiol Scand 113:89–101

    Article  CAS  PubMed  Google Scholar 

  • Andersson O, Grillner S (1983) Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion” Acta Physiol Scand 118:229–239

    Article  CAS  PubMed  Google Scholar 

  • Angel MJ, Guertin P, Jimenez T, McCrea DA (1996) Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion. J Physiol 494:851–861

    CAS  PubMed  Google Scholar 

  • Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95

    Article  CAS  PubMed  Google Scholar 

  • Bélanger M, Drew T, Rossignol S (1988) Spinal locomotion: a comparison of the kinematics and the electromyographic activity in the same animal before and after spinalization. Acta Biol Hungarica 39:151–154

    Google Scholar 

  • Bélanger M, Drew T, Provencher J, Rossignol S (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 76:471–491

    PubMed  Google Scholar 

  • Bem T, Cabelguen JM, Ekeberg O, Grillner S (2003) From swimming to walking: a single basic network for two different behaviors. Biol Cybern 88:79–90

    Article  PubMed  Google Scholar 

  • Bennett DJ, De Serres SJ, Stein RB (1996) Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities. J Physiol 496:837–850

    CAS  PubMed  Google Scholar 

  • Bessou P, Dupui P, Cabelguen JM, Joffroy M, Montoya R, Pages B (1989) Discharge patterns of gamma motoneurone populations of extensor and flexor hindlimb muscles during walking in the thalamic cat. Prog Brain Res 80:37–45

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, Giszter SF, Loeb E, Mussa-Ivaldi FA, Saltiel P (1995) Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci 18:442–446

    Article  CAS  PubMed  Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371–3385

    CAS  PubMed  Google Scholar 

  • Bouyer LJG, Rossignol S (2003a) Contribution of cutaneous inputs from the hindpaw to the control of locomotion: 1. Intact cats. J Neurophysiol 90:3625–3639

    Article  CAS  PubMed  Google Scholar 

  • Bouyer LJG, Rossignol S (2003b) Contribution of cutaneous inputs from the hindpaw to the control of locomotion: 2. Spinal cats. J Neurophysiol 90:3640–3653

    Article  CAS  PubMed  Google Scholar 

  • Brown TG (1914) On the nature of the fundamental activity of the nervous centres together with an analysis of the conditioning of rhythmic activity in progression and a theory of the evolution of function in the nervous system. J Physiol 48: 18–46

    CAS  PubMed  Google Scholar 

  • Brown IE, Loeb GE (2000) Measured and modeled properties of mammalian skeletal muscle: IV. dynamics of activation and deactivation. J Muscle Res Cell Motil 21:33–47

    Article  CAS  PubMed  Google Scholar 

  • Brown IE, Scott SH, Loeb GE (1996) Mechanics of feline soleus: II. Design and validation of a mathematical model. J Muscle Res Cell Motil 17:221–233

    Article  CAS  PubMed  Google Scholar 

  • Brown IE, Cheng EJ, Loeb GE (1999) Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships. J Muscle Res Cell Motil 20:627–643

    Article  CAS  PubMed  Google Scholar 

  • Brownstone RM, Jordan LM, Kriellaars DJ, Noga BR, Shefchyk SJ (1992) On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Exp Brain Res 90:441–455

    Article  CAS  PubMed  Google Scholar 

  • Buford JA, Smith JL (1990) Adaptive control for backward quadrupedal walking. II.Hindlimb muscle synergies. J Neurophysiol 64:756–766

    CAS  PubMed  Google Scholar 

  • Buford JA, Smith JL (1993) Adaptive control for backward quadrupedal walking: III. Stumbling corrective reactions and cutaneous reflex sensitivity. J Neurophysiol 70: 1102–1114

    CAS  PubMed  Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Degtyarenko AM, Simon ES (2001) Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 86: 447–462

    CAS  PubMed  Google Scholar 

  • Butera Jr RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations Of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Cabelguen J-M, Orsal D, Perret C, Zattara M (1981) Central pattern generation of forelimb and hindlimb locomotor activities in the cat. In: Szentagothai J, Palkovits M, Hamori J (eds) Regulatory functions of the CNS, principles of motion and organization. Adv Physiol Sci 1: Akadamiai Kiado, Budapest, pp 199–211

    Google Scholar 

  • Carrier L, Brustein L, Rossignol S (1997) Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. J Neurophysiol 77:1979–1993

    CAS  PubMed  Google Scholar 

  • Chen WJ, Poppele RE (1978) Small-signal analysis of response of mammalian muscle spindles with fusimotor stimulation and a comparison with large-signal responses. J Neurophysiol 41:15–27

    CAS  PubMed  Google Scholar 

  • Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68:643–656

    Article  CAS  PubMed  Google Scholar 

  • Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13:15–21

    Article  CAS  PubMed  Google Scholar 

  • Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M (1995) A modular artificial neural net for controlling a six-legged walking system. Biol Cybern 72:421–430

    Article  CAS  PubMed  Google Scholar 

  • Cruse H, Dean J, Kindermann T, Schmitz J, Schumm M (1998) Simulation of complex movements using artificial neural networks. Z Naturforsch [C ] 53:628–638

    CAS  Google Scholar 

  • Degtyarenko AM, Simon ES, Burke RE (1996) Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion. J Neurophysiol 76:2972–2985

    CAS  PubMed  Google Scholar 

  • Dietz V, Colombo G (1998) Influence of body load on the gait pattern in Parkinson’s disease. Mov Disorders 13:255–261

    Article  CAS  Google Scholar 

  • Dietz V, Duysens J (2000) Significance of load receptor input during locomotion: a review. Gait Posture 11:102–110

    Article  CAS  PubMed  Google Scholar 

  • Donelan JM, Pearson KG (2004a) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92:2093–2104

    Article  CAS  Google Scholar 

  • Donelan JM, Pearson KG (2004b) Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can J Physiol Pharmacol 82:589–598

    Article  CAS  Google Scholar 

  • Drew T (1988) Motor cortical cell discharge during voluntary gait modification. Brain Res 457:181–187

    Article  CAS  PubMed  Google Scholar 

  • Drew T, Rossignol S (1987) A kinematic and electromyographic study of cutaneous reflexes evoked from the forelimb of unrestrained walking cats. J Neurophysiol 57:1160–1184

    CAS  PubMed  Google Scholar 

  • Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74:426–442

    Article  CAS  PubMed  Google Scholar 

  • Durbaba R, Taylor A, Rawlinson SR, Ellaway PH (2003) Static fusimotor action during locomotion in the decerebrated cat revealed by cross-correlation of spindle afferent activity. Exp Physiol 88:285–296

    Article  CAS  PubMed  Google Scholar 

  • Duysens J, Loeb GE (1980) Modulation of ipsi-and contralateral reflex responses in unrestrained walking cats. J Neurophysiol 44:1024–1037

    CAS  PubMed  Google Scholar 

  • Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187:321–332

    Article  CAS  PubMed  Google Scholar 

  • Duysens J, Tax AAM, Trippel M, Dietz V (1992) Phase-dependent reversal of reflexly induced movements during human gait. Exp Brain Res 90:404–414

    Article  CAS  PubMed  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:83–133

    CAS  PubMed  Google Scholar 

  • Ekeberg O (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69:363–374

    Google Scholar 

  • Ekeberg O, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Philos Trans R Soc Lond B Biol Sci 354:895–902

    Article  CAS  PubMed  Google Scholar 

  • Ekeberg O, Pearson K (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94:4256–4268

    Article  PubMed  Google Scholar 

  • Ekeberg O, Grillner S, Lansner A (1995) The neural control of fish swimming studied through numerical simulations. Adapt Behav 3:363–384

    Article  Google Scholar 

  • Ekeberg O, Blumel M, Buschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Develop 33:287–300

    Article  Google Scholar 

  • Engberg I, Lundberg A (1969) An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol Scand 75:614–630

    Article  CAS  PubMed  Google Scholar 

  • Fleshman JW, Lev-Tov A, Burke RE (1984) Peripheral and central control of flexor digitorium longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity. Exp Brain Res 54:133–149

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H (1979) Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 42:936–953

    CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85:103–107

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S, Wallen P (1976) Phasic control of reflexes during locomotion in vertebrates. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum, New York, pp 647–674

    Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1977) Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res 132:121–139

    Article  CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Halbertsma J (1980a) The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand 108:269–281

    Article  CAS  Google Scholar 

  • Forssberg H, Grillner S, Halbertsma J, Rossignol S (1980b) The locomotion of the low spinal cat: II. Interlimb coordination. Acta Physiol Scand 108:283–295

    Article  CAS  Google Scholar 

  • Giuliani CA, Smith JL (1987) Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J Neurosci 7:2537–2546

    CAS  PubMed  Google Scholar 

  • Goldberger ME (1977) Locomotor recovery after unilateral hindlimb deafferentation in cats. Brain Res 123:59–74

    Article  CAS  PubMed  Google Scholar 

  • Goldberger ME (1983) Recovery of accurate limb movements after deafferentation in cats. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 455–463

    Google Scholar 

  • Goldberger ME (1987) Recovery of locomotion and postural reflexes after spinal cord deafferentation. Neuroscience 22:S6

    Google Scholar 

  • Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJA (1994) Corrective responses to loss of ground support during walking I. Intact cats. J Neurophysiol 71:603–609

    CAS  Google Scholar 

  • Gossard J-P, Hultborn H (1991) The organization of the spinal rhythm generation in locomotion. In: Wernig A (ed) Restorative neurology. Elsevier, Amsterdam, pp 385–404

    Google Scholar 

  • Gossard J-P, Brownstone RM, Barajon I, Hultborn H (1994) Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp Brain Res 98:213–228

    Article  CAS  PubMed  Google Scholar 

  • Granat MH, Heller BW, Nicol DJ, Baxendale RH, Andrews BJ (1993) Improving limb flexion in FES gait using the flexion withdrawal response for the spinal cord injured person. J Biomed Eng 15:51–56

    Article  CAS  PubMed  Google Scholar 

  • Gregory JE, Proske U (1979) The responses of Golgi tendon organs to stimulation of different combinations of motor units. J Physiol 295:251–262

    CAS  PubMed  Google Scholar 

  • Gregory JE, Proske U (1981) Motor unit contractions initiating impulses in a tendon organ in the cat. J Physiol 313:251–262

    CAS  PubMed  Google Scholar 

  • Gregory JE, Morgan DL, Proske U (1985) Site of impulse initiation in tendon organs of cat soleus muscle. J Neurophysiol 54:1383–1395

    CAS  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146:269–277

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1984) The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol Scand 120:393–405

    Article  CAS  PubMed  Google Scholar 

  • Guertin P, Angel MJ, Perreault M-C, McCrea DA (1995) Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J Physiol 487:197–209

    CAS  PubMed  Google Scholar 

  • Halbertsma JM (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl. 521:1–75

    CAS  PubMed  Google Scholar 

  • Harkema SJ, Hurlay SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR (1997) Human lumbosacral spinal cord interpret loading during stepping. J Neurophysiol 77:797–811

    CAS  PubMed  Google Scholar 

  • Hasan Z (1983) A model of spindle afferent response to muscle stretch. J Neurophysiol 49:989–1006

    CAS  PubMed  Google Scholar 

  • Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol 75:1126–1137

    CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126:136–195

    Article  Google Scholar 

  • Houk J, Simon W (1967) Responses of Golgi tendon organs to forces applied to muscle tendon. J Neurophysiol 30:1466-1481

    CAS  PubMed  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    CAS  PubMed  Google Scholar 

  • Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232

    Article  PubMed  Google Scholar 

  • Hunt CC (1990) Mammalian muscle spindle: peripheral mechanisms. Physiol Rev 70:643–663

    CAS  PubMed  Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84:331–348

    Article  CAS  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Cabelguen JM (2005) Simulation and studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3:171–195

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  CAS  PubMed  Google Scholar 

  • Ivashko DG, Prilutsky BI, Markin SN, Chapin JK, Rybak IA (2003) Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52-:621-29

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72:623–666

    CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effects of DOPA on the spinal cord. 6. Half centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    Article  CAS  PubMed  Google Scholar 

  • Jayne BC (1988) Muscular mechanisms of snake locomotion: an electromyographic study of lateral undulation of the Florida banded water snake (Nerodia fasciata) and the yellow rat snake (Elaphe obsoleta). J Morphol 197:159–181

    Article  CAS  PubMed  Google Scholar 

  • Kendall FP, McCreary EK, Provance PG (1993) Muscles: testing and function. Lippincot Williams& Wilkins, Baltimore

    Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the Mammalian spinal cord. Annu Rev Neurosci 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Koshland GF, Smith JL (1989) Mutable and immutable features of paw-shake responses after hindlimb deafferentation in the cat. J Neurophysiol 62:162–173

    CAS  PubMed  Google Scholar 

  • Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71:1–13

    Google Scholar 

  • Kuo PD, Eliasmith C (2005) Integrating behavioral and neural data in a model of zebrafish network interaction. Biol Cybern 93:178–187

    Article  PubMed  Google Scholar 

  • Kuo AD, Donelan JM, Ruina A (2005) Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev 33:88–97

    Article  PubMed  Google Scholar 

  • LaBella L, Niechaj A, Rossignol S (1992) Low-threshold, short-latency cutaneous reflexes during fictive locomotion in the “semi-chronic” spinal cat. Exp Brain Res 91:236–248

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94:1120–1132

    Article  PubMed  Google Scholar 

  • Lam T, Pearson KG (2001) Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J Neurophysiol 86:1321–1332

    CAS  PubMed  Google Scholar 

  • Lam T, Pearson KG (2002) The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol 508:343–355

    PubMed  Google Scholar 

  • Langlet C, Leblond H, Rossignol S (2005) The mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. J Neurophysiol 93:2474–2488

    Article  CAS  PubMed  Google Scholar 

  • Lundberg A (1981) Half-centres revisited. In: Szentagothai J, Palkovits M, Hamori J (eds) Regulatory Functions of the CNS. Principles of Motion and Organization. Advances in Physiological Science, vol 1 Pergamon, Budapest, pp 155-67

  • Matthews PBC, Stein RB (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol 200:723–744

    CAS  PubMed  Google Scholar 

  • McCrea DA, Shefchyk SJ, Stephens MJ, Pearson KG (1995) Disynaptic group: I. excitation of ankle extensor motoneurones during fictive locomotion in the cat. J Physiol 487:527–539

    CAS  PubMed  Google Scholar 

  • McFadyen BJ, Winter DA, Allard F (1994) Simulated control of unilateral, anticipatory locomotor adjustments during obstructed gait. Biol Cybern 72:151–160

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA (1984) A Lumped, Linear Model of the Spindle. Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton , pp 152–154

    Google Scholar 

  • Mileusnic MP, Loeb GE (2006) Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. J Neurophysiol 96:1789–1802

    Article  PubMed  Google Scholar 

  • Mileusnic MP, Brown IE, Lan N, Loeb GE (2006) Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 96:1772–1788

    Article  PubMed  Google Scholar 

  • Moschovakis AK, Sholomenko GN, Burke RE (1991) Differential control of short latency cutaneous excitation in cat FDL motoneurons during fictive locomotion. Exp Brain Res 83:489–501

    Article  CAS  PubMed  Google Scholar 

  • Moschovakis AK, Solodkin M, Burke RE (1992) Anatomical and physiological study of interneurons in an oligosynaptic cutaneous reflex pathway in the cat hindlimb. Brain Res 586:311–318

    Article  CAS  PubMed  Google Scholar 

  • Mott FW, Sherrington CS (1895) Experiments upon the influence of sensory nerves upon movement and nutrition of the limbs: preliminary communication. Proc R Soc Lond B481-89

  • Ogihara N, Yamazaki N (2001) Generation of human bipedal locomotion by a bio-mimetic neuro–musculo-skeletal model. Biol Cybern 84:1–11

    Article  CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York , pp 1–322

    Google Scholar 

  • Pandy MG (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–273

    Article  CAS  PubMed  Google Scholar 

  • Pandy MG (2003) Simple and complex models for studying muscle function in walking. Philos Trans R Soc Lond B Biol Sci 358:1501–1509

    Article  PubMed  Google Scholar 

  • Paul C, Bellotti M, Jezernik S, Curt A (2005) Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol Cybern 93:153–170

    Article  PubMed  Google Scholar 

  • Pearson KG (2000) Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol 62:723–753

    Article  CAS  PubMed  Google Scholar 

  • Pearson KG, Rossignol S (1991) Fictive motor patterns in chronic spinal cats. J Neurophysiol 66:1874–1887

    CAS  PubMed  Google Scholar 

  • Pearson KG, Misiaszek JE, Hulliger M (2003) Chemical ablation of sensory afferents in the walking system of the cat abolishes the capacity for functional recovery after peripheral nerve lesions. Exp Brain Res 150:50–60

    CAS  PubMed  Google Scholar 

  • Pearson K, Ekeberg O, Buschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29:625–631

    Article  CAS  PubMed  Google Scholar 

  • Perret C, Cabelguen J-M (1976) Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat. Brain Res 106:390–395

    Article  CAS  PubMed  Google Scholar 

  • Perret C, Cabelguen J-M (1980) Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res 187:333–352

    Article  CAS  PubMed  Google Scholar 

  • Pratt CA, Chanaud CM, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. IV. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles. Exp Brain Res 85: 281–299

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A (1989) Sensorimotor gain control: a basic strategy of motor systems? Prog Neurobiol 33:281–307

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A (1993) Comparison of natural and artificial control of movement. IEEE Trans Rehab Eng 1:7–17

    Article  Google Scholar 

  • Prochazka A (1996) Proprioceptive feedback and movement regulation. In: Rowell LB, Sheperd JT (eds) Handbook of physiology. Sect 12. Exercise: regulation and integration of multiple systems. American Physiological Society, New York, pp 89–127

    Google Scholar 

  • Prochazka A, Gorassini M (1998a) Ensemble firing of muscle afferents recorded during normal locomotion in cats. J Physiol 507(Pt 1):293–304

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Gorassini M (1998b) Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol 507(Pt 1):277–291

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Hulliger M, Zangger P, Appenteng K (1985) “Fusimotor set” new evidence for alpha-independent control of gamma-motoneurones during movement in the awake cat. Brain Res 339:136–140

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Gritsenko V, Yakovenko S (2002) Sensory control of locomotion: reflexes versus higher-level control. Adv Exp Med Biol 508:357–367

    PubMed  Google Scholar 

  • Quevedo J, Fedirchuk B, Gosgnach S, McCrea DA (2000) Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion. J Physiol 525:549–564

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Stecina K, Gosgnach S, McCrea DA (2005a) Stumbling corrective reaction during fictive locomotion in the cat. J Neurophysiol 94:2045–2052

    Article  Google Scholar 

  • Quevedo J, Stecina K, McCrea DA (2005b) Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat. J Neurophysiol 94:2053–2062

    Article  PubMed  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Sheperd JT (eds) Handbook of physiology, Sect. 12. Exercise: Regulation and Integration of Multiple Systems. Oxford University Press, New York, pp 173–216

    Google Scholar 

  • Rossignol S, Saltiel P, Perreault M-C, Drew T, Pearson KG, Bélanger M (1993) Intralimb and interlimb coordination in the cat during real and fictive rhythmic motor programs. Neurosciences 5:67–75

    Article  Google Scholar 

  • Rossignol S, Bélanger M, Chau C, Giroux N, Brustein E, Bouyer L, Grenier C-A, Drew T, Barbeau H, Reader T (2000) The spinal cat. In: Kalb RG, Strittmatter SM (eds) Neurobiology of spinal cord injury. Humana, Totowa, pp 57–87

    Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, St John WM, Paton JF, Pierrefiche O (2003) Endogenous rhythm generation in the pre-Botzinger complex and ionic currents: modelling and in vitro studies. Eur J Neurosci 18:239–257

    Article  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006a) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol doi: 10.1113/jphysiol.2006.118703 (in press)

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006b) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol doi: 10.1113/jphysiol.2006.118711 (in press)

  • Saltiel P, Rossignol S (2004a) Critical points in the forelimb fictive locomotor cycle and motor coordination: evidence from the effects of tonic proprioceptive perturbations in the cat. J Neurophysiol 92:1329–1341

    Article  PubMed  Google Scholar 

  • Saltiel P, Rossignol S (2004b) Critical points in the forelimb fictive locomotor cycle of the cat and motor coordination: effects of phasic retractions and protractions of the shoulder in the cat. J Neurophysiol 92:1342–1356

    Article  PubMed  Google Scholar 

  • Schafer SS (1974) The discharge frequencies of primary muscle spindle endings during simultaneous stimulation of two fusimotor filaments. Pflugers Arch 350:359–372

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BJ, Meyers DER, Fleshman JL, Tokuriki M, Burke RE (1988) Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion. Exp Brain Res 71:568–578

    Article  CAS  PubMed  Google Scholar 

  • Schomburg ED, Petersen N, Barajon I, Hultborn H (1998) Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp Brain Res 122:339–350

    Article  CAS  PubMed  Google Scholar 

  • Schouenborg J (2002) Modular organisation and spinal somatosensory imprinting. Brain Res Rev 40:80–91

    Article  PubMed  Google Scholar 

  • Sharrard WJ (1964) The segmental innervation of the lower limb muscles in man. Annu R Coll Surg Engl 35:106–122

    CAS  Google Scholar 

  • Sherrington CS (1910a) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    CAS  Google Scholar 

  • Sherrington CS (1910b) Remarks on the reflex mechanism of the step. Brain 33:1–25

    Article  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765

    Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LOD, Nielsen J (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol 523:817–827

    Article  CAS  PubMed  Google Scholar 

  • Stein PS, Daniels-McQueen S (2002) Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching. J Neurosci 22:6800–6809

    CAS  PubMed  Google Scholar 

  • Stein RB, Misiaszek JE, Pearson KG (2000) Functional role of muscle reflexes for force generation in the decerebrate walking cat. J Physiol 525:781–791

    Article  CAS  PubMed  Google Scholar 

  • Stephens MJ, Yang JF (1999) Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle. Exp Brain Res 124:363–370

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1995a) A model of the neuro-musculo-skeletal system for human locomotion: I. Emergence of basic gait. Biol Cybern 73:97–111

    Article  CAS  Google Scholar 

  • Taga G (1995b) A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints. Biol Cybern 73:113–121

    Article  CAS  Google Scholar 

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78:9–17

    Article  CAS  PubMed  Google Scholar 

  • Taga G, Yamaguchi Y, Shimizu H (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern 65:147–159

    Article  CAS  PubMed  Google Scholar 

  • Taub E (1976) Motor behavior following deafferentation in the developing and motorically mature monkey. In: Herman R, Grillner S, Ralston HJ, Stein PSG, Stuart D (eds) Neural control of locomotion. Plenum, New York, pp 675-705

    Google Scholar 

  • Taub E, Berman AJ (1968) Movement and learning in the absence of sensory feedback. In: Sandford, Frecdman J (eds) The neurophysiology of spatially oriented behaviour. Dorsey Press, Homewood, pp 173–191

    Google Scholar 

  • Taylor A, Durbaba R, Ellaway PH (2004) Direct and indirect assessment of gamma-motor firing patterns. Can J Physiol Pharmacol 82:793–802

    Article  CAS  PubMed  Google Scholar 

  • Twitchell TE (1954) Sensory factors in purposive movement. J Neurophysiol 17:239–252

    CAS  PubMed  Google Scholar 

  • Vanderhorst VGJM, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76

    Article  CAS  PubMed  Google Scholar 

  • Viala G, Buser P (1974) Inhibition des activités spinales à caractère locomoteur par une modalité particulière de stimulation somatique chez le lapin. Exp Brain Res 21:275–284

    Article  CAS  PubMed  Google Scholar 

  • Viala G, Orsal D, Buser P (1978) Cutaneous fiber groups involved in the inhibition of fictive locomotion in the rabbit. Exp Brain Res 33:257–267

    Article  CAS  PubMed  Google Scholar 

  • Wadden T, Ekeberg O (1998) A neuro-mechanical model of legged locomotion: single leg control. Biol Cybern 79: 161–173

    Article  CAS  PubMed  Google Scholar 

  • Wallen P, Williams TL (1984) Fictive locomotion in lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol 347:225–239

    CAS  PubMed  Google Scholar 

  • Wand P, Prochazka A, Sontag KH (1980) Neuromuscular responses to gait perturbations in freely moving cats. Exp Brain Res 38:109–114

    Article  CAS  PubMed  Google Scholar 

  • Wetzel MC, Atwater AE, Wait JV, Stuart DG (1976) Kinematics of locomotion by cats with a single hindlimb deafferented. J Neurophysiol 39:667–678

    CAS  PubMed  Google Scholar 

  • Wu JZ, Dong RG, Rakheja S, Schopper AW, Smutz WP (2004) A structural fingertip model for simulating of the biomechanics of tactile sensation. Med Eng Phys 26:165–175

    Article  CAS  PubMed  Google Scholar 

  • Yakovenko S, Mushahwar V, VanderHorst V, Holstege G, Prochazka A (2002) Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J Neurophysiol 87:1542–1553

    PubMed  Google Scholar 

  • Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90:146–155

    Article  CAS  PubMed  Google Scholar 

  • Yang JF, Stein RB, James KB (1991) Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Exp Brain Res 87:679–687

    Article  CAS  PubMed  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    CAS  PubMed  Google Scholar 

  • Zajac FE (2002) Understanding muscle coordination of the human leg with dynamical simulations. J Biomech 35:1011–1018

    Article  PubMed  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking: Part I. Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232

    Article  PubMed  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking: Part II. Lessons from dynamical simulations and clinical implications. Gait Posture 17:1–17

    Article  PubMed  Google Scholar 

  • Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58:185–205

    Article  CAS  PubMed  Google Scholar 

  • Zehr EP, Komiyama T, Stein RB (1997) Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J Neurophysiol 77:3311–3325

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Rossignol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigon, A., Rossignol, S. Experiments and models of sensorimotor interactions during locomotion. Biol Cybern 95, 607–627 (2006). https://doi.org/10.1007/s00422-006-0129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0129-x

Keywords

Navigation