Skip to main content

Advertisement

Log in

The importance of cutaneous feedback on neural activation during maximal voluntary contraction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the importance of cutaneous feedback on neural activation during maximal voluntary contraction (MVC) of the ankle plantar flexors.

Methods

The effects of cutaneous plantar anaesthesia were assessed in 15 subjects and compared to 15 controls, using a one-day pre/post-repeated measures design. Cutaneous plantar anaesthesia was induced by lidocaine injection at the centre of forefoot, lateral midfoot, and heel. Each subject performed isometric MVCs of the ankle plantar flexors. During each isometric ramp contraction, the following variables were assessed: maximal isometric torque; surface electromyography (EMG) activity of the medial gastrocnemius (MG) and tibialis anterior (TA) muscles; and co-contraction index (CCI) between the MG and TA.

Results

For ankle torque, two-way ANOVA showed no significant interaction between the pre/post-measurements × group (p = 0.166). However, MG activity presented significant interactions between the pre/post-measurements × group (p = 0.014). Post hoc comparisons indicated a decrease of MG activity in the experimental group, from 85.9 ± 11.9 to 62.7 ± 30.8% (p = 0.016). Additionally, the post-anaesthesia MG activity of the experimental group differed statistically with pre- and post-MG activity of the control group (p = 0.027 and p = 0.008, respectively). For TA activity and CCI, two-way ANOVA detected no significant interactions between the pre/post-measurements × group (p = 0.605 and p = 0.332, respectively).

Conclusion

Our results indicate that during MVC, cutaneous feedback modulates neural activity to MG muscle, without changing the extent of MG–TA co-contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MVC:

Maximal voluntary contraction

sEMG:

Surface electromyography

MG:

Medial gastrocnemius

TA:

Tibialis anterior

MIT:

Maximal isometric torque

CCI:

Co-contraction index

References

  • Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639. doi:10.1016/j.neuron.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  • Ackerley R, Kavounoudias A (2015) The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 79(Pt B):192–205. doi:10.1016/j.neuropsychologia.2015.06.024

    Article  PubMed  Google Scholar 

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32(2):459–463

    Article  CAS  Google Scholar 

  • Andrade AO, Nasuto S, Kyberd P, Sweeney-Reed CM, Van Kanijn FR (2006) EMG signal filtering based on empirical mode decomposition. Biomed Signal Process Control 1(1):44–55. doi:10.1016/j.bspc.2006.03.003

    Article  Google Scholar 

  • Arampatzis A, Karamanidis K, Stafilidis S, Morey-Klapsing G, DeMonte G, Brüggemann G-P (2006) Effect of different ankle-and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. J Biomech 39(10):1891–1902

    Article  Google Scholar 

  • Augurelle AS, Smith AM, Lejeune T, Thonnard JL (2003) Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 89(2):665–671. doi:10.1152/jn.00249.2002

    Article  PubMed  Google Scholar 

  • Baweja HS, Patel BK, Martinkewiz JD, Vu J, Christou EA (2009) Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res 197(1):35–47. doi:10.1007/s00221-009-1883-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhanpuri NH, Okamura AM, Bastian AJ (2012) Active force perception depends on cerebellar function. J Neurophysiol 107(6):1612–1620. doi:10.1152/jn.00983.2011

    Article  PubMed  Google Scholar 

  • Billot M, Simoneau E, Van Hoecke J, Martin A (2010) Coactivation at the ankle joint is not sufficient to estimate agonist and antagonist mechanical contribution. Muscle Nerve 41(4):511–518. doi:10.1002/mus.21530

    Article  PubMed  Google Scholar 

  • Boissy P, Bourbonnais D, Carlotti MM, Gravel D, Arsenault BA (1999) Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil 13(4):354–362

    Article  CAS  Google Scholar 

  • Bui TV, Akay T, Loubani O, Hnasko TS, Jessell TM, Brownstone RM (2013) Circuits for grasping: spinal dI3 interneurons mediate cutaneous control of motor behavior. Neuron 78(1):191–204. doi:10.1016/j.neuron.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burcal CJ, Wikstrom EA (2016) Plantar cutaneous sensitivity with and without cognitive loading in people with chronic ankle instability, copers, and uninjured controls. J Orthop Sports Phys Ther 46(4):270–276. doi:10.2519/jospt.2016.6351

    Article  PubMed  Google Scholar 

  • Chang KM (2010) Arrhythmia ECG noise reduction by ensemble empirical mode decomposition. Sensors (Basel) 10(6):6063–6080. doi:10.3390/s100606063

    Article  Google Scholar 

  • Choi JT, Jensen P, Nielsen JB, Bouyer LJ (2016) Error signals driving locomotor adaptation: Cutaneous feedback from the foot is used to adapt movement during perturbed walking. J Physiol. doi:10.1113/JP271996

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Almeida Y, Black ML, Christou EA, Clark DJ (2014) Site-specific differences in the association between plantar tactile perception and mobility function in older adults. Front Aging Neurosci 6:68. doi:10.3389/fnagi.2014.00068

    Article  PubMed  PubMed Central  Google Scholar 

  • De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13(2):135–163

    Article  Google Scholar 

  • Deshpande N, Ferrucci L, Metter J, Faulkner KA, Strotmeyer E, Satterfield S, Schwartz A, Simonsick E (2008) Association of lower limb cutaneous sensitivity with gait speed in the elderly: the health ABC study. Am J Phys Med Rehabil 87(11):921–928. doi:10.1097/PHM.0b013e31818a5556

    Article  PubMed  PubMed Central  Google Scholar 

  • Disselhorst-Klug C, Schmitz-Rode T, Rau G (2009) Surface electromyography and muscle force: limits in sEMG-force relationship and new approaches for applications. Clin Biomech (Bristol Avon) 24(3):225–235. doi:10.1016/j.clinbiomech.2008.08.003

    Article  Google Scholar 

  • Duque J, Vandermeeren Y, Lejeune TM, Thonnard JL, Smith AM, Olivier E (2005) Paradoxical effect of digital anaesthesia on force and corticospinal excitability. Neuro Rep 16:259–262

    Google Scholar 

  • Ernberg M, Serra E, Baad-Hansen L, Svensson P (2009) Influence of topical anaesthesia on the corticomotor response to tongue training. Arch Oral Biol 54(7):696–704

    Article  CAS  Google Scholar 

  • Fallon JB, Bent LR, McNulty PA, Macefield VG (2005) Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J Neurophysiol 94(6):3795–3804. doi:10.1152/jn.00359.2005

    Article  PubMed  Google Scholar 

  • Fan RE, Culjat MO, King C-H, Franco ML, Boryk R, Bisley JW, Dutson E, Grundfest WS (2008) A haptic feedback system for lower-limb prostheses. Neural Syst Rehabil Eng IEEE Trans 16 (3):270–277

    Article  Google Scholar 

  • Folland JP, Williams AG (2007) Methodological issues with the interpolated twitch technique. J Electromyogr Kinesiol 17(3):317–327. doi:10.1016/j.jelekin.2006.04.008

    Article  PubMed  Google Scholar 

  • Freund H-J (2002) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193

    Google Scholar 

  • Frigon A, Thibaudier Y, Johnson MD, Heckman CJ, Hurteau MF (2012) Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Exp Neurol 235(2):588–598. doi:10.1016/j.expneurol.2012.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Gondring WH, Shields B (2011) A touch pressure sensory assessment of the surgical treatment of the tarsal tunnel syndrome. Foot Ankle Surg 17(4):266–269. doi:10.1016/j.fas.2010.08.010

    Article  PubMed  Google Scholar 

  • Gregor RJ, Smith DW, Prilutsky BI (2006) Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns. J Neurophysiol 95(3):1397–1409. doi:10.1152/jn.01300.2004

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G (1999) European recommendations for surface electromyography. Roessingh Res Dev 8(2):13–54

    Google Scholar 

  • Hesse S, Brandl-Hesse B, Seidel U, Doll B, Gregoric M (2000) Lower limb muscle activity in ambulatory children with cerebral palsy before and after the treatment with Botulinum toxin A. Restor Neurol Neurosci 17(1):1–8

    CAS  PubMed  Google Scholar 

  • Hohne A, Ali S, Stark C, Bruggemann GP (2012) Reduced plantar cutaneous sensation modifies gait dynamics, lower-limb kinematics and muscle activity during walking. Eur J Appl Physiol 112(11):3829–3838. doi:10.1007/s00421-012-2364-2

    Article  PubMed  Google Scholar 

  • Jenkins ME, Almeida QJ, Spaulding SJ, van Oostveen RB, Holmes JD, Johnson AM, Perry SD (2009) Plantar cutaneous sensory stimulation improves single-limb support time, and EMG activation patterns among individuals with Parkinson’s disease. Parkinsonism Relat Disord 15(9):697–702. doi:10.1016/j.parkreldis.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  • Jinha A, Ait-Haddou R, Herzog W (2006) Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model. J Biomech 39(6):1145–1152. doi:10.1016/j.jbiomech.2005.03.001

    Article  PubMed  Google Scholar 

  • Jones KE, Hamilton AFdC, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88(3):1533–1544

    Article  Google Scholar 

  • Karamanidis K, Stafilidis S, DeMonte G, Morey-Klapsing G, Bruggemann GP, Arampatzis A (2005) Inevitable joint angular rotation affects muscle architecture during isometric contraction. J Electromyogr Kinesiol 15(6):608–616. doi:10.1016/j.jelekin.2005.02.001

    Article  PubMed  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (2001) Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J Physiol 532(3):869–878

    Article  CAS  Google Scholar 

  • Keefer DJ, Tseh W, Caputo J, Apperson K, McGreal S, Vint P, Morgan D (2004) Interrelationships among thigh muscle co-contraction, quadriceps muscle strength and the aerobic demand of walking in children with cerebral palsy. Electromyogr Clin Neurophysiol 44(2):103–110

    CAS  PubMed  Google Scholar 

  • Kim CM, Eng JJ (2003) The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Phys Ther 83(1):49–57

    Article  Google Scholar 

  • Kim Y, Shim JK, Hong YK, Lee SH, Yoon BC (2013) Cutaneous sensory feedback plays a critical role in agonist-antagonist co-activation. Exp Brain Res 229(2):149–156. doi:10.1007/s00221-013-3601-6

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Gomez-Ramirez M, Thakur PH, Hsiao SS (2015) Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex. Neuron 86(2):555–566. doi:10.1016/j.neuron.2015.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knikou M (2007) Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord. Spinal Cord 45(1):69–77. doi:10.1038/sj.sc.3101917

    Article  CAS  PubMed  Google Scholar 

  • Limonta E, Rampichini S, Ce E, Esposito F (2015) Effects of visual feedback absence on force control during isometric contraction. Eur J Appl Physiol 115(3):507–519. doi:10.1007/s00421-014-3036-1

    Article  PubMed  Google Scholar 

  • McPoil TG, Cornwall MW (2006) Plantar tactile sensory thresholds in healthy men and women. The Foot 16(4):192–197. doi:10.1016/j.foot.2006.07.001

    Article  Google Scholar 

  • Meyer PF, Oddsson LI, De Luca CJ (2004) The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res 156(4):505–512. doi:10.1007/s00221-003-1804-y

    Article  PubMed  Google Scholar 

  • Mildren RL, Hare CM, Bent LR (2016) Cutaneous afferent feedback from the posterior ankle contributes to proprioception. Neurosci Lett. doi:10.1016/j.neulet.2016.10.058

    Article  PubMed  Google Scholar 

  • Parsons SL, Mansfield A, Inness EL, Patterson KK (2016) The relationship of plantar cutaneous sensation and standing balance post-stroke. Top Stroke Rehabil 23(5):326–332

    Article  Google Scholar 

  • Powell MR, Powden CJ, Houston MN, Hoch MC (2014) Plantar cutaneous sensitivity and balance in individuals with and without chronic ankle instability. Clin J Sport Med 24(6):490–496

    Article  Google Scholar 

  • Rantanen T, Era P, Heikkinen E (1994) Maximal isometric strength and mobility among 75-year-old men and women. Age Ageing 23(2):132–137

    Article  CAS  Google Scholar 

  • Roll R, Kavounoudias A, Roll J-P (2002) Cutaneous afferents from human plantar sole contribute to body posture awareness. Neuroreport 13(15):1957–1961

    Article  Google Scholar 

  • Rosa MC, Marques A, Demain S, Metcalf CD, Rodrigues J (2014) Methodologies to assess muscle co-contraction during gait in people with neurological impairment—a systematic literature review. J Electromyogr Kinesiol 24(2):179–191. doi:10.1016/j.jelekin.2013.11.003

    Article  PubMed  Google Scholar 

  • Rossi S, Pasqualetti P, Tecchio F, Sabato A, Rossini PM (1998) Modulation of corticospinal output to human hand muscles following deprivation of sensory feedback. Neuroimage 8(2):163–175

    Article  CAS  Google Scholar 

  • Said G (2007) Diabetic neuropathy—a review. Nat Clin Pract Neurol 3(6):331–340

    Article  Google Scholar 

  • Sayenko DG, Vette AH, Obata H, Alekhina MI, Akai M, Nakazawa K (2009) Differential effects of plantar cutaneous afferent excitation on soleus stretch and H-reflex. Muscle Nerve 39(6):761–769. doi:10.1002/mus.21254

    Article  PubMed  Google Scholar 

  • Sehle A, Busching I, Vogt E, Liepert J (2016) Temporary deafferentation evoked by cutaneous anesthesia: behavioral and electrophysiological findings in healthy subjects. J Neural Transm (Vienna) 123(5):473–480. doi:10.1007/s00702-016-1537-2

    Article  CAS  Google Scholar 

  • Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6(12):1309–1316. doi:10.1038/nn1154

    Article  CAS  PubMed  Google Scholar 

  • Shim JK, Karol S, Kim YS, Seo NJ, Kim YH, Kim Y, Yoon BC (2012) Tactile feedback plays a critical role in maximum finger force production. J Biomech 45(3):415–420. doi:10.1016/j.jbiomech.2011.12.001

    Article  PubMed  Google Scholar 

  • Skelton DA, GREIG CA, DAVIES JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23(5):371–377

    Article  CAS  Google Scholar 

  • Toumi A, Jakobi JM, Simoneau-Buessinger E (2016) Differential impact of visual feedback on plantar-and dorsi-flexion maximal torque output. Appl Physiol Nutr Metab 41(5):557–559

    Article  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement. New York, John Wiley & Sons

    Book  Google Scholar 

  • Zhang X, Zhou P (2013) Filtering of surface EMG using ensemble empirical mode decomposition. Med Eng Phys 35(4):537–542. doi:10.1016/j.medengphy.2012.10.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tapia.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Montecinos, C., Maas, H., Pellegrin-Friedmann, C. et al. The importance of cutaneous feedback on neural activation during maximal voluntary contraction. Eur J Appl Physiol 117, 2469–2477 (2017). https://doi.org/10.1007/s00421-017-3734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3734-6

Keywords

Navigation