Skip to main content
Log in

Effects of breathing frequency on the heart rate deceleration capacity and heart rate acceleration capacity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The deceleration capacity (DC) and acceleration capacity (AC) of heart rate as well as the respiratory rate predict outcome after acute myocardial infarction. We evaluated the relation between breathing frequency and both DC and AC, as well as the difference between them.

Methods

We studied fourteen healthy young adults who breathed spontaneously and controlled their breathing to rates of 0.1, 0.2, 0.3, and 0.4 Hz in a supine position. A 5-min R–R interval time series without movement artifacts or ectopic beats was obtained from each studied period and scanned to identify the anchor points that were characterized by a value longer or shorter than the preceding value. Averaged changes of R–R intervals surrounding the deceleration and acceleration anchors were calculated as DC and AC, respectively.

Results

The magnitudes of DC and AC increased progressively as breathing frequency decreased (Both p < 0.001 by one-way repeated-measures analysis of variance). The magnitude of DC was larger than the magnitude of AC during 0.1-Hz breathing (95 % confidence interval of their difference: 1.7–9.7 ms), while the difference between them reduced to near zero at higher frequencies.

Conclusions

Slow breathing enhances the magnitudes of DC and AC simultaneously under the conditions used in this study. The increase in the magnitude of DC is significantly greater than that of AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AC:

Acceleration capacity

DC:

Deceleration capacity

ECG:

Electrocardiography

HRAGI :

Guzik’s index of heart rate asymmetry

HRV:

Heart rate variability

MI:

Myocardial infarction

MSNA:

Muscle sympathetic nerve activity

PRSA:

Phase-rectified signal averaging

RRI:

R–R interval

SR:

Spontaneous respiration

References

  • Barthel P, Wensel R, Bauer A, Muller A, Wolf P, Ulm K, Huster KM, Francis DP, Malik M, Schmidt G (2013) Respiratory rate predicts outcome after acute myocardial infarction: a prospective cohort study. Eur Heart J 34(22):1644–1650. doi:10.1093/eurheartj/ehs420

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006a) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367(9523):1674–1681. doi:10.1016/S0140-6736(06)68735-7

    Article  PubMed  Google Scholar 

  • Bauer A, Kantelhardt JW, Bunde A, Barthel P, Schneider R, Malik M, Schmidt G (2006b) Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Phys A 364:423–434. doi:10.1016/j.physa.2005.08.080

    Article  Google Scholar 

  • Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human R–R interval power spectra is largely ignored. J Appl Physiol 75(5):2310–2317

    CAS  PubMed  Google Scholar 

  • Campana LM, Owens RL, Clifford GD, Pittman SD, Malhotra A (2010) Phase-rectified signal averaging as a sensitive index of autonomic changes with aging. J Appl Physiol 108(6):1668–1673. doi:10.1152/japplphysiol.00013.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dommasch M, Sinnecker D, Barthel P, Muller A, Dirschinger RJ, Hapfelmeier A, Huster KM, Laugwitz KL, Malik M, Schmidt G (2014) Nocturnal respiratory rate predicts non-sudden cardiac death in survivors of acute myocardial infarction. J Am Coll Cardiol 63(22):2432–2433. doi:10.1016/j.jacc.2014.02.525

    Article  PubMed  Google Scholar 

  • Eames PJ, Potter JF, Panerai RB (2004) Influence of controlled breathing patterns on cerebrovascular autoregulation and cardiac baroreceptor sensitivity. Clin Sci 106(2):155–162. doi:10.1042/CS20030194

    Article  PubMed  Google Scholar 

  • Eckberg DL (2003) The human respiratory gate. J Physiol 548(Pt 2):339–352. doi:10.1113/jphysiol.2002.037192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman P, Karemaker J, Wieling W (1991) Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology 28(2):201–216

    Article  CAS  PubMed  Google Scholar 

  • Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H (2006) Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech 51(4):272–275. doi:10.1515/BMT.2006.054

    Article  Google Scholar 

  • Guzik P, Piskorski J, Contreras P, Migliaro ER (2010) Asymmetrical properties of heart rate variability in type 1 diabetes. Clin Auton Res 20(4):255–257. doi:10.1007/s10286-010-0057-7

    Article  PubMed  Google Scholar 

  • Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami T (1994) Effects of respiratory interval on vagal modulation of heart rate. Am J Physiol 267(1 Pt 2):H33–H40

    CAS  PubMed  Google Scholar 

  • Henry RA, Lu IL, Beightol LA, Eckberg DL (1998) Interactions between CO2 chemoreflexes and arterial baroreflexes. Am J Physiol 274(6 Pt 2):H2177–H2187

    CAS  PubMed  Google Scholar 

  • Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241(4):H620–H629

    CAS  PubMed  Google Scholar 

  • Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M, Bernardi L (2005) Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension 46(4):714–718. doi:10.1161/01.HYP.0000179581.68566.7d

    Article  CAS  PubMed  Google Scholar 

  • Katona PG, Poitras JW, Barnett GO, Terry BS (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218(4):1030–1037

    CAS  PubMed  Google Scholar 

  • Klintworth A, Ajtay Z, Paljunite A, Szabados S, Hejjel L (2012) Heart rate asymmetry follows the inspiration/expiration ratio in healthy volunteers. Physiol Meas 33(10):1717–1731. doi:10.1088/0967-3334/33/10/1717

    Article  PubMed  Google Scholar 

  • Novak V, Novak P, de Champlain J, Le Blanc AR, Martin R, Nadeau R (1993) Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol 74(2):617–626

    CAS  PubMed  Google Scholar 

  • Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248(1 Pt 2):H151–H153

    CAS  PubMed  Google Scholar 

  • Radaelli A, Raco R, Perfetti P, Viola A, Azzellino A, Signorini MG, Ferrari AU (2004) Effects of slow, controlled breathing on baroreceptor control of heart rate and blood pressure in healthy men. J Hypertens 22(7):1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, Bernardi L, Andreas S (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32(2):387–392. doi:10.1183/09031936.00109607

    Article  CAS  PubMed  Google Scholar 

  • Ricca-Mallada R, Migliaro ER, Piskorski J, Guzik P (2012) Exercise training slows down heart rate and improves deceleration and acceleration capacity in patients with heart failure. J Electrocardiol 45(3):214–219. doi:10.1016/j.jelectrocard.2012.01.002

    Article  PubMed  Google Scholar 

  • Rudas L, Crossman AA, Morillo CA, Halliwill JR, Tahvanainen KU, Kuusela TA, Eckberg DL (1999) Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol 276(5 Pt 2):H1691–H1698

    CAS  PubMed  Google Scholar 

  • Seals DR, Suwarno NO, Dempsey JA (1990) Influence of lung volume on sympathetic nerve discharge in normal humans. Circ Res 67(1):130–141

    Article  CAS  PubMed  Google Scholar 

  • Sin PYW, Galletly DC, Tzeng YC (2010) Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am J Physiol Heart Circ Physiol 298(5):H1588–H1599. doi:10.1152/ajpheart.00036.2010

    Article  CAS  PubMed  Google Scholar 

  • Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C (1995) Respiratory sinus arrhythmia in humans: an obligatory role for vagal feedback from the lungs. J Appl Physiol 78(2):638–645

    CAS  PubMed  Google Scholar 

  • Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141(2):122–131. doi:10.1016/j.ijcard.2009.09.543

    Article  PubMed  Google Scholar 

  • Wang YP, Kuo TBJ, Lai CT, Lee GS, Yang CCH (2012) Effects of breathing frequency on baroreflex effectiveness index and spontaneous baroreflex sensitivity derived by sequence analysis. J Hypertens 30(11):2151–2158. doi:10.1097/HJH.0b013e328357ff46

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Kuo TBJ, Lai CT, Chu JW, Yang CCH (2013) Effects of respiratory time ratio on heart rate variability and spontaneous baroreflex sensitivity. J Appl Physiol 115(11):1648–1655. doi:10.1152/japplphysiol.00163.2013

    Article  PubMed  Google Scholar 

  • Wang YP, Kuo TBJ, Yang CCH (2014) A possible explanation for the effects of respiration on heart rate and blood pressure asymmetry. Int J Cardiol 174(3):805–807. doi:10.1016/j.ijcard.2014.04.152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (10201-62-062) from Taipei City Hospital (Taiwan) and a grant (102MG09) from Science Park Administration, National Science Council. The authors did not receive any financial support from any manufacturer. The authors take full responsibility for the experimental design, data collection, data analysis, and the interpretation of the findings. We thank Ms Chieh-Wen Chen for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl C. H. Yang.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YP., Kuo, T.B.J., Lai, CT. et al. Effects of breathing frequency on the heart rate deceleration capacity and heart rate acceleration capacity. Eur J Appl Physiol 115, 2415–2420 (2015). https://doi.org/10.1007/s00421-015-3219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3219-4

Keywords

Navigation