Skip to main content

Advertisement

Log in

Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain)

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Cadmium (Cd), tungsten (W), tellurium (Te), beryllium (Be), and lead (Pb), are non-essential metals pervasive in the human environment. Studies on athletes during training periods compared to non-training control subjects, indicate increased loss of minerals through sweat and urine. The aim of this study was to compare the level of these trace elements, determined by inductively coupled plasma mass spectrometry (ICP-MS) in urine samples, between athletes and age-matched sedentary subjects living in the same geographical area, although anthropometric and cardiovascular measurements showed that athletes have significantly (P ≤ 0.001) lower BMI, body fat and heart rate, whereas the muscle and bone percentage was significantly (P ≤ 0.001) higher than in sedentary subjects. The validity of the methodology was checked by the biological certified reference material. Trace element analysis concentrations, expressed in μg/mg creatinine, of five toxic elements in urine from athletes (n = 21) versus sedentary subjects, (n = 26) were as follows: Cd (0.123 ± 0.075 vs. 0.069 ± 0.041, P ≤ 0.05); W (0.082 ± 0.053 vs. < limit of detection); Te (0.244 ± 0.193 vs. 0.066 ± 0.045, P ≤ 0.001), Be (0.536 ± 0.244 vs. 0.066 ± 0.035, P ≤ 0.001); Pb (0.938 ± 0.664 vs. 2.162 ± 1.444 P ≤ 0.001). With the exception of Pb, urine toxic metal concentrations from athletes were higher than from sedentary subjects. This fact suggests that physical activity counteracts, at least in part, the cumulative effect of toxic environment by increasing the urine excretion of toxic metals in trained people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcelo-Batllori S, Corominola H, Claret M, Canals I, Guinovart J, Gomis R (2005) Target identification of the novel antiobesity agent tungstate in adipose tissue from obese rats. Proteomics 5:4927–4935

    Article  PubMed  CAS  Google Scholar 

  • Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the US population: implications for urinary biologic monitoring measurements. Environ Health Persp 113:192–200

    Article  CAS  Google Scholar 

  • Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci 110:113–140

    Article  PubMed  CAS  Google Scholar 

  • Campbell WW, Anderson RA (1987) Effects of aerobic exercise and training on the trace minerals chromium, zinc and copper. Sports Med 4:9–18

    Article  PubMed  CAS  Google Scholar 

  • Canals I, Carmona MC, Amigo M, Barbera A, Bortolozzi A, Artigas F, Gomis R (2009) A Functional Leptin System Is Essential for Sodium Tungstate Antiobesity Action. Endocrinology 150:642–650

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Lin L, Hang W, Yan XM (2009) Beryllium uptake and related biological effects studied in THP-1 differentiated macrophages. Metallomics 1:471–478

    Article  PubMed  CAS  Google Scholar 

  • Durnin JV, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Perez B, Caride A, Cabaleiro T, Lafuente A (2010) Cadmium effects on 24 h changes in glutamate, aspartate, glutamine, GABA and taurine content of rat striatum. J Trace Elem Med Biol 24:212–218

    Article  PubMed  CAS  Google Scholar 

  • Fillol C, Dor F, Labat L, Boltz P, Le Bouard J, Mantey K, Mannschott C, Puskarczyk E, Viller F, Momas I, Seta N (2010) Urinary arsenic concentrations and speciation in residents living in an area with naturally contaminated soils. Sci Total Environ 408:1190–1194

    Article  PubMed  CAS  Google Scholar 

  • Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes RG, Cotgreave IA (1999) Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase. Int J Biochem Cell B 31:291–301

    Article  CAS  Google Scholar 

  • Goldoni M, Catalani S, De Palma G, Manini P, Acampa O, Corradi M, Bergonzi R, Apostoli P, Mutti A (2004) Exhaled breath condensate as a suitable matrix to assess lung dose and effects in workers exposed to cobalt and tungsten. Environ Health Persp 112:1293–1298

    Article  CAS  Google Scholar 

  • Goulle JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G, Bouige D, Lacroix C (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: reference values. Forensic Sci Int 153:39–44

    Article  PubMed  CAS  Google Scholar 

  • Heitland P, Koster HD (2004) Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J Anal Atom Spectrom 19:1552–1558

    Article  CAS  Google Scholar 

  • Heitland P, Koster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365:310–318

    Article  PubMed  CAS  Google Scholar 

  • Kikukawa A, Kobayashi A (2002) Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Envir Med 73:991–995

    CAS  Google Scholar 

  • Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N (2006) A review of tungsten: From environmental obscurity to scrutiny. J Hazard Mater 136:1–19

    Article  PubMed  CAS  Google Scholar 

  • Marrella M, Guerrini F, Solero PL, Tregnaghi PL, Schena F, Velo GP (1993) Blood copper and zinc chages in runners after a marathon. J Trace Elem Electrolytes Health Dis 7:248–250

    PubMed  CAS  Google Scholar 

  • Marti-Cid R, Llobet JM, Castell V, Domingo JL (2008) Dietary intake of arsenic, cadmium, mercury, and lead by the population of Catalonia, Spain. Biol Trace Elem Res 125:120–132

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Moreno LG, Quintanar-Escorza MA, Gonzalez S, Mondragon R, Cerbon-Solorzano J, Valdes J, Calderon-Salinas JV (2009) Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxicol In Vitro 23:1298–1304

    Article  PubMed  CAS  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Sharrett AR, Calderon-Aranda E, Selvin E, Guallar E (2005) Metals in urine and peripheral arterial disease. Environ Health Persp 113:164–169

    Article  CAS  Google Scholar 

  • Padilla MA, Elobeid M, Ruden DM, Allison DB (2010) An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99–02. Int J Environ Res Public Health 7:3332–3347

    Article  PubMed  CAS  Google Scholar 

  • Pourvaghar MJ, Shahsavar AR (2009) Changes at nano scale level in copper after an aerobic activity in males. Digest J Nanomater Bios 4:809–812

    Google Scholar 

  • Rodriguez Tuya I, Pinilla Gil E, Maynar Marino M, Garcia-Monco Carra RM, Sanchez Misiego A (1996) Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol Occup Phys 73:299–303

    Article  CAS  Google Scholar 

  • Sarmiento-González A, Marchante-Gayón J, Tejerina-Lobo J, Paz-jiménez J, Sanz-Medel A (2005) ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids. Anal Bioanal Chem 382:9

    Article  Google Scholar 

  • Savas S, Senel O, Okan I, Aksu ML (2007) Effect of acute maximal aerobic exercise upon the trace element levels in blood. Neuroendocrinol Lett 28:675–680

    PubMed  CAS  Google Scholar 

  • Schiar VPP, dos Santos DB, Paixao MW, Nogueira CW, Rocha JBT, Zeni G (2009) Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: a possible involvement of reactive oxygen species. Chem-Biol Interact 177:28–33

    Article  PubMed  CAS  Google Scholar 

  • Shi HL, Ma YQ, Ma YF (1995) A simple and fast method to determine and quantify urinary creatinine. Anal Chim Acta 312:79–83

    Article  CAS  Google Scholar 

  • Strigul N, Koutsospyros A, Christodoulatos C (2010) Tungsten speciation and toxicity: acute toxicity of mono- and poly-tungstates to fish. Ecotox Environ Safe 73:164–171

    Article  CAS  Google Scholar 

  • Wang H, Han M, Yang S, Chen Y, Liu Q, Ke S (2011) Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling. Environ Int 37:80–85

    Article  PubMed  Google Scholar 

  • Wozniak K, Blasiak J (2003) In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA-protein cross-links. Mutat Res-Gen Tox En 535:127–139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Regional Development Fund (ERDF) and the Junta of Extremadura (project PRI08B130).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Caballero.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LLerena, F., Maynar, M., Barrientos, G. et al. Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain). Eur J Appl Physiol 112, 3027–3031 (2012). https://doi.org/10.1007/s00421-011-2276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2276-6

Keywords

Navigation