Skip to main content
Log in

Effects of menstrual phase on performance and recovery in intense intermittent activity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Game sport and training require repeated high intensity bursts. This study examined differences between high intensity, intermittent work in two phases of the menstrual cycle. Six physically active young women (age 19–29) performed 10 6-s sprints on a cycle ergometer in both the mid-follicular (FP) (days 6–10) and late-luteal phases (LP) (days 20–24) of the menstrual cycle. Work, power, oxygen intake \( {\left( {\ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{2} } \right)} \) parameters, and capillarized blood lactate were measured. Data are analyzed using the Friedman and Wilcoxon matched pairs tests. There was no difference between menstrual phases in peak 6-s power (6.8(0.6) W kg−1 in FP, 6.9(0.6) W kg−1 in LP), the drop off in work (1.2(3.5) J kg−1 in FP and 1.0(2.7) J kg−1 in LP), or in the sprint \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{2} \) (23.7 (1.5) mL kg−1 min−1 in LP and 24.3(2.4) mL kg−1 min−1 in FP). Capillarized blood lactate was also similar in both phases of the menstrual cycle both at 1 min (9.2 (2.7) mmol L−1 in FP, 9.2 (3.1) mmol L−1) and at 3 min (9.0 (2.2) mmol L−1 in FP, 9.2 (2.2) mmol L−1 in LP). However, the average 6-s work was greater in the LP (39.3 (3.4) J kg−1) than during the FP (38.3 (3.1) J kg−1) (P=0.023). The recovery \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{2} \) was also greater in the LP than the FP (26.3 (2.4) mL kg−1 min−1 in LP, 25.0 (2.6) mL kg−1 min−1 in FP, P=0.023). Average work over a series of sprints and the \( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}{\text{O}}_{2} \) consumed between sprints may be slightly greater during the LP than the FP of the menstrual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balsom PD, Gaitanos GC, Ekblom B, Sjodin B (1994) Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physio Scand 152:279–285

    CAS  Google Scholar 

  • Bishop D, Spencer M, Duffield R, Lawrence S (2001) The validity of a repeated sprint ability test. J Sci Med Sport 4:19–29

    Article  PubMed  CAS  Google Scholar 

  • Bonen A, Haynes F, Watson-Wright W, Sopper M, Pierce G, Low M, Graham T (1983) Effects of menstrual cycle on metabolic responses to exercise. J App Physiol 55:1506–1513

    CAS  Google Scholar 

  • Bonen A, Ling W, MacIntyre K, Neil R, McGrail J, Belcastro A (1989) Effects of exercise on the serum concentrations of FSH, LH, progesterone and estradiol. Eur J Appl Physiol Occup Physiol 42:15–25

    Article  Google Scholar 

  • DeSouza M, Maguire M, Rubin K, Maresh C (1990) Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc 22:575–580

    Article  CAS  Google Scholar 

  • Frankovich R, Lebrun C (2000) Menstrual cycle, contraception, and performance. Clin Sports Med 19:251–271

    Article  PubMed  CAS  Google Scholar 

  • Gaesser G, Brooks G (1984) Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc 16:29–43

    PubMed  CAS  Google Scholar 

  • Gaitanos G, Williams L, Boobis L, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75:712–719

    PubMed  CAS  Google Scholar 

  • Giacomoni M., Bernard T, Gavarry O, Altare S, Falgairette G (2000) Influence of the menstrual cycle phase and menstrual symptoms on maximal anaerobic performance. Med Sci Sports Exerc 32:486–492

    Article  PubMed  CAS  Google Scholar 

  • Gore C, Withers R (1990) The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. Eur J Appl Physiol 60:169–174

    Article  CAS  Google Scholar 

  • Hackney AC, McCracken-Compton MA, Ainsworth B (1994) Substrate responses to submaximal exercise in the midfolicular and midluteal phases of the menstrual cycle. Int J Sport Nutr 4:299–308

    PubMed  CAS  Google Scholar 

  • Hamilton AL, Nevill ME, Brooks S, Williams C (1991) Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and games players. J Sports Sci 8:371–382

    Google Scholar 

  • Hessemer V, Bruck K (1985) Influence of menstrual cycle on thermoregulatory, metabolic and heart rate responses to exercise at night. J Appl Physiol 59:1911–1917

    PubMed  CAS  Google Scholar 

  • Jurkowski J, Jones N, Toews C, Sutton J (1981) Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 51:1493–1499

    PubMed  CAS  Google Scholar 

  • Jurkowski J, Jones N, Walker W, Younglai E, Sutton J (1978) Ovarian hormonal responses to exercise. J Appl Physiol 44:109–114

    PubMed  CAS  Google Scholar 

  • Keizer H, Poortman J, Bunnik G (1980) Influence of physical exercise on sex-hormone metabolism. J Appl Physiol 48:765–769

    PubMed  CAS  Google Scholar 

  • Lebrun C, McKenzie D, Prior J, Taunton J (1995) Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 27:437–444

    PubMed  CAS  Google Scholar 

  • Lebrun C, Rumball J (2001) Relationship between athletic performance and menstrual cycle. Curr Women’s Health Rep 1:232–240

    CAS  Google Scholar 

  • Lynch N, Nimmo M (1998) Effects of menstrual cycle phase and oral contraceptive use on intermittent exercise. Eur J Appl Physiol 78:565–572

    Article  CAS  Google Scholar 

  • Matsuo T, Saitoh S, Suzuki M (1999) Effects of the menstrual cycle on excess postexercise oxygen consumption in healthy young women. Metabolism 48:275–277

    Article  PubMed  CAS  Google Scholar 

  • McCracken M, Ainsworth B, Hackney A (1994) Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol Occup Physiol 69:174–175

    Article  PubMed  CAS  Google Scholar 

  • McMahon S, Jenkins D (2002) Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med 32:761–784

    Article  PubMed  Google Scholar 

  • Parkhouse WS, McKenzie DC (1984) Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review. Med Sci Sports Exerc 16:328–338

    PubMed  CAS  Google Scholar 

  • Redman LM, Scroop GC, Norman RJ (2003) Impact of menstrual cycle phase on the exercise status of young sedentary women. Eur J Appl Physiol 90:505–13

    Article  PubMed  Google Scholar 

  • Redman L, Weatherby R (2004) Measuring performance during the menstrual cycle: a model using oral contraceptives. Med Sci Sports Exerc 36:130–136

    Article  PubMed  Google Scholar 

  • Sahlin K (1992) Metabolic factors in fatigue. Sports Med 13:99–107

    Article  PubMed  CAS  Google Scholar 

  • Shivaji S, Devi L, Ahmad M, Sundaram C (1995) 31P NMR study of phosphorus containing metabolites in the uterus of hamster: changes during the estrous cycle and the effect of hormonal manipulation. J Steroid Bioc Mol Biol 52:587–594

    Article  CAS  Google Scholar 

  • Short K, Sedlock D (1997) Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol 83:153–159

    PubMed  CAS  Google Scholar 

  • Sunderland C, Nevill M (2003) Effects of menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. Eur J Appl Physiol 88:345–352

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    PubMed  CAS  Google Scholar 

  • Tomlin D, Wenger H (2002) The relationships between aerobic fitness, power maintenance, and oxygen consumption during intense intermittent exercise. J Sci Med Sport 5:194–203

    Article  PubMed  CAS  Google Scholar 

  • Wootton S, Williams C (1983) The influence of recovery duration on repeated maximal sprints. In: Knuttgen H, Vogel J, Poortmans J (eds) Biochemistry of exercise. Human Kinetics, Illinois, pp 269–273

    Google Scholar 

Download references

Acknowledgements

We thank MDS Metro for providing free serum progesterone testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Middleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, L.E., Wenger, H.A. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur J Appl Physiol 96, 53–58 (2006). https://doi.org/10.1007/s00421-005-0073-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0073-9

Key Words

Navigation