Skip to main content

Advertisement

Log in

Influence of glucose and insulin on transcapillary fluid absorption from the arm during lower body negative pressure in man

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study examined the influence of insulin and glucose on the transcapillary fluid absorption during lower body negative pressure (LBNP) in humans. Ten healthy males [23 (1) years] were exposed to LBNP of 45 cmH2O on two occasions: (1) before and during a hyperinsulinaemic clamp (HI) and (2) before and during a hyperglycaemic clamp (HG). Transcapillary fluid absorption and blood flow were recorded with volumetric technique. Forearm blood flow increased during HI from 2.3 (0.3) ml (100 ml)−1 min−1 to 3.3 (0.5) ml (100 ml)−1 min−1 (P<0.05). The haemodynamic response to LBNP was similar during HI and HG compared with control LBNP. Transcapillary fluid absorption during LBNP increased during HG from 0.044 (0.007) ml (100 ml)−1 min−1 to 0.059 (0.009) ml (100 ml)−1 min−1 (P<0.01), whereas it was unchanged during HI. In conclusion, hyperglycaemia augments transcapillary fluid absorption from skeletal muscle and skin during LBNP whereas hyperinsulinaemia has no such effect. This indicates that in human hyperglycaemia contributes to plasma volume restitution during hypovolaemic circulatory stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL (1991) Hyperinsulinaemia produces both sympathetic neural activation and vasodilatation in normal humans. J Clin Invest 87:2246–2252

    CAS  PubMed  Google Scholar 

  • Baron AD (1994) Hemodynamic action of insulin. Am J Physiol 267:E187–E202

    CAS  PubMed  Google Scholar 

  • Bauer W, Vigas SNM, Haist RE, Drucker WR (1969) Insulin during hypovolaemic shock. Surgery 66:80–88

    CAS  PubMed  Google Scholar 

  • Bonadonna RC, Saccomani MP, Del Prato S, Bonora E, DeFronzo RA, Cobelli C (1998) Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation 98:234–241

    CAS  PubMed  Google Scholar 

  • Cooper KE, Edholm OG, Mottram RF (1955) The blood flow in skin and muscle of the human forearm. J Physiol (Lond) 128:258–267

    Google Scholar 

  • DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223

    PubMed  Google Scholar 

  • Drucker WR, Chadwick CDJ, Gann DS (1981) Transcapillary refill in hemorrhage and shock. Arch Surg 116:1344–1353

    CAS  PubMed  Google Scholar 

  • Dunne F, Barry D, Grealy G, Ferriss JB (1991) Home blood pressure monitoring devices: an evaluation of their performance. J Ambulatory Monit 4:275–280

    Google Scholar 

  • Hafferl A (1957) Lehrbuch der topographischen Anatomie. Springer, Berlin Göttingen Heidelberg

  • Hall EH, Schwinghamer JM, Lalone B (1976) Mechanism of blood vessel constriction during hemorrhage. Am J Physiol 230:569–578

    CAS  PubMed  Google Scholar 

  • Hilstedt J, Christensen NJ, Larsen S (1989) Effects of catecholamines and insulin on plasma volume and intravascular mass of albumin in man. Clin Sci 77:149–155

    PubMed  Google Scholar 

  • Houben AJH, Schaper NC, De Haan CHA, Huvers FC, Slaff DW, De Leeuw PW, Nieuwenhuijzen Kruseman AC (1996) Local 24-h hyperglycaemia does not affect endothelium dependent or -independent vasoreactivity in humans. Am J Physiol 270:H2014–H2020

    CAS  PubMed  Google Scholar 

  • Järhult J (1973) Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand 89:213–226

    PubMed  Google Scholar 

  • Järhult J (1975) Role of the sympatho-adrenal system in hemorrhagic hyperglycaemia. Acta Physiol Scand 93:25–33

    PubMed  Google Scholar 

  • Kahn AM, Seidel CL, Allen JC, O'Neil RG, Shelat H, Song T (1993) Insulin reduces contraction and intracellular calcium contraction in vascular smooth muscle. Hypertension 22:735–742

    CAS  PubMed  Google Scholar 

  • Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866

    CAS  PubMed  Google Scholar 

  • Länne T, Edfeldt H, Quittenbaum S, Lundvall J (1992) Large capillary fluid permeability in skeletal muscle and skin in man as a basis for rapid beneficial fluid transfer between tissue and blood. Acta Physiol Scand 146:313–319

    PubMed  Google Scholar 

  • Lightenberg G, Blankenstijn PJ, Koomans HA (1998) Haemodynamic response during lower body negative pressure: role of volume status. J Am Soc Nephrol 9:105–113

    PubMed  Google Scholar 

  • Lundvall J, Länne T (1989) Large capacity in man for effective plasma volume control in hypovolaemia via fluid transfer from tissue to blood. Acta Physiol Scand 137:513–520

    CAS  PubMed  Google Scholar 

  • Maspers M, Björnberg J (1991) Beta2-adrenergic attenuation of capillary pressure autoregulation during haemorrhagic hypotension, a mechanism promoting transcapillary fluid absorption in skeletal muscle. Acta Physiol Scand 142:470–475

    Google Scholar 

  • Maspers M, Björnberg J, Mellander S (1990) Relation between capillary pressure and vascular tone over the range from maximum dilatation to maximum constriction in cat skeletal muscle. Acta Physiol Scand 140:73–83

    CAS  PubMed  Google Scholar 

  • Mellander S (1960) Comparative studies of the adrenergic neuro-humoral control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand 50 [Suppl 176]:1–86

  • Mellander S, Lewis D (1963) Effect of hemorrhagic shock on the reactivity of resistance and capacitance vessels and on capillary filtration transfer in cat skeletal muscle. Circ Res 13:105–118

    CAS  Google Scholar 

  • Miller JA, Floras JS, Zinman B, Skorecki KL, Logan AG (1996) Effect of glucose on arterial pressure, plasma renin activity and renal function in early diabetes. Clin Sci 90:189–195

    CAS  PubMed  Google Scholar 

  • Muntzel MS, Thurnhost RL, Johnson AK (1997) Effects of subfornical lesions on sympathetic nerve responses to insulin. Hypertension 29:1020–1024

    CAS  PubMed  Google Scholar 

  • Olsen H, Länne T (2000) Reduced capillary hydraulic conductivity in skeletal muscle and skin in Type I diabetes: a possible cause for reduced transcapillary fluid absorption during hypovolaemia. Diabetologia 43:1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Olsen H, Hulthén UL, Länne T (1999) Reduced transcapillary fluid absorption from skeletal muscle and skin during hypovolaemia in insulin-dependent diabetes mellitus. J Intern Med 246:477–488

    Article  CAS  PubMed  Google Scholar 

  • Olsen H, Vernersson E, Länne T (2000) Cardiovascular response to acute hypovolaemia in relation to age. Implications for orthostasis and haemorrhage. Am J Physiol 278:H222–H232

    CAS  Google Scholar 

  • Parving HH, Noer I, Deckert T, Evrin PE, Nielsen SL, Lyngsøe J, Mogensen CE, Rørth M, Svendsen PAA, Trap-Jensen J, Lassen NA (1976) The effect of metabolic regulation on microvascular permeability to small and large molecules in short-term diabetics. Diabetologia 12:161–166

    CAS  PubMed  Google Scholar 

  • Sandeman D, Shore AC, Tooke JE (1992) Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and control. N Engl J Med 327:760–764

    CAS  PubMed  Google Scholar 

  • Shackford SR, Mackersie RC, Holbrook TL, Davis JW, Hollingworth-Fridlund P, Hoyt DB, Wolf PL (1993) The epidemiology of traumatic death. Arch Surg 128:571–575

    CAS  PubMed  Google Scholar 

  • Steinberg HO, Brechtel G., Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilatation is nitric oxide dependent. J Clin Invest 94:1172–1179

    CAS  PubMed  Google Scholar 

  • Tack CJJ, Schefman AEP, Willems JL, Thien T, Lutterman JA (1996a) Direct vasodilator effect of physiological hyperinsulinaemia in human skeletal muscle. Eur J Clin Invest 26:772–778

    CAS  PubMed  Google Scholar 

  • Tack CJJ, Smits P, Willemsen JJ, Lenders JWM, Thien T, Lutterman JA (1996b) Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes 45:15–22

    CAS  PubMed  Google Scholar 

  • Tilton RG, Kawamura T, Chang KC, Ido Y, Bjercke RJ, Stephan CC, Brock TA, Williamson JR (1997) Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 99:2192–2202

    CAS  PubMed  Google Scholar 

  • Ware J, Norberg K-A, Nylander G (1983) Solute equilibrium over the extracellular fluid space in haemorrhagic hypotension: A study in a cannulated thoracic duct model. Eur Surg Res 15:256–261

    CAS  PubMed  Google Scholar 

  • Williams SB, Goldfine A, Timini FK, Ting HH, Roddy M-A, Simonson DC, Creager MA (1998) Acute hyperglycaemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

  • Wolthius RA, Bergman SA, Nicogossian AE (1974) Physiological effects of locally applied reduced pressure in man. Physiol Rev 54:566–595

    PubMed  Google Scholar 

Download references

Acknowledgements

Grants from Novo Foundation, Denmark, the Medical Faculty, Lund University, the Medical Research Council (no. 12661), the Swedish Heart Lung Foundation and the Funds of Malmö University Hospital supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, H., Groop, L. & Länne, T. Influence of glucose and insulin on transcapillary fluid absorption from the arm during lower body negative pressure in man. Eur J Appl Physiol 90, 138–143 (2003). https://doi.org/10.1007/s00421-003-0894-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0894-3

Keywords

Navigation