Skip to main content
Log in

A new algorithm for shape parameter optimization in the multiquadric method for bending beam and elastic plane BVPs

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, an enhancement to the Multiquadric Radial Basis Function (MQ-RBF) method is presented for solving Elasticity Boundary Value Problems (E-BVPs). MQ-RBF is utilized to reproduce the system of governing partial differential equations and boundary conditions. Also the inefficacies of some existing methods in determining the Optimal Shape Parameter (OSP) when solving E-BVPs are shown. Afterward, a new algorithm is introduced based on Teaching–Learning-Based Optimization (TLBO). In addition, the lower and upper bounds of the shape parameter and a new objective function were introduced for the TLBO algorithm. Using the algorithm, one OSP is obtained for both MQ-RBF functions in 2D problems, resulting in reduced computational cost. Its efficiency is evidenced by solving several examples. Moreover, its accuracy is demonstrated by comparing its outcomes to those of analytical methods. Unlike the 1D problems, the OSP is found to be a function of loading and material properties as well as the geometry in 2D problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Magnucki, K., Lewinski, J., Cichy, R.: Bending of beams with bisymmetrical cross sections under non-uniformly distributed load: analytical and numerical-FEM studies. Arch. Appl. Mech. 89, 2103–2114 (2019)

    Article  Google Scholar 

  2. Aribas, U.N., Ermis, M., Omurtag, M.H.: The static and stress analyses of axially functionally graded exact super-elliptical beams via mixed FEM. Arch. Appl. Mech. 91, 4783–4796 (2021)

    Article  Google Scholar 

  3. Zienkiewicz, O.C., Taylor, R.L., Taylor, R.L., Taylor, R.L.: The Finite Element Method: Solid Mechanics. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  4. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  5. Javaran, S.H., Khaji, N.: Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method. Appl. Math. Model. 38, 3641–3651 (2014)

    Article  MathSciNet  Google Scholar 

  6. Babouskos, N.G., Katsikadelis, J.T.: Optimum design of thin plates via frequency optimization using BEM. Arch. Appl. Mech. 85, 1175–1190 (2015)

    Article  Google Scholar 

  7. Aliabadi, M.H.: The Boundary Element Method, Volume 2: Applications in Solids and Structures. Wiley, New York (2002)

    Google Scholar 

  8. Poullikkas, A., Karageorghis, A., Georgiou, G.: The method of fundamental solutions for three-dimensional elastostatics problems. Comput. Struct. 80, 365–370 (2002)

    Article  MathSciNet  Google Scholar 

  9. Lin, G., Zhang, P., Liu, J., Li, J.: Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method. Compos. Struct. 187, 579–592 (2018)

    Article  Google Scholar 

  10. Egger, A.W., Chatzi, E.N., Triantafyllou, S.P.: An enhanced scaled boundary finite element method for linear elastic fracture. Arch. Appl. Mech. 87, 1667–1706 (2017)

    Article  Google Scholar 

  11. Wolf, J.P.: The Scaled Boundary Finite Element Method. Wiley, New York (2003)

    Google Scholar 

  12. Khodakarami, M.I., Khaji, N.: Analysis of elastostatic problems using a semi-analytical method with diagonal coefficient matrices. Eng. Anal. Bound. Elem. 35, 1288–1296 (2011)

    Article  Google Scholar 

  13. Babaee, R., Khaji, N.: Decoupled scaled boundary finite element method for analysing dam–reservoir dynamic interaction. Int. J. Comput. Math. 97, 1725–1743 (2020)

    Article  MathSciNet  Google Scholar 

  14. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  15. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  Google Scholar 

  16. Li, J., Cheng, A.H.-D., Chen, C.-S.: A comparison of efficiency and error convergence of multiquadric collocation method and finite element method. Eng. Anal. Bound. Elem. 27, 251–257 (2003)

    Article  Google Scholar 

  17. Libre, N.A., Emdadi, A., Kansa, E.J., Rahimian, M., Shekarchi, M.: A stabilized RBF collocation scheme for Neumann type boundary value problems. Comput. Model. Eng. Sci. 24, 61–80 (2008). https://doi.org/10.3970/cmes.2008.024.061

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, L., Wu, Z.: Radial basis functions method for parabolic inverse problem. Int. J. Comput. Math. 88, 384–395 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kazem, S., Rad, J.A., Parand, K., Shaban, M., Saberi, H.: The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method. Int. J. Comput. Math. 89, 2240–2258 (2012)

    Article  MathSciNet  Google Scholar 

  20. Chen, C.S., Karageorghis, A., Amuzu, L.: Kansa RBF collocation method with auxiliary boundary centres for high order BVPs. J. Comput. Appl. Math. 113680 (2021)

  21. Liu, Y., Wang, X., Wang, L.: Interval uncertainty analysis for static response of structures using radial basis functions. Appl. Math. Model. 69, 425–440 (2019). https://doi.org/10.1016/j.apm.2018.12.018

    Article  MathSciNet  MATH  Google Scholar 

  22. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. with Appl. 24, 99–120 (1992)

    Article  MathSciNet  Google Scholar 

  23. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  24. Franke, R.: A Critical Comparison of some Methods for Interpolation of Scattered Data. Naval Postgraduate School, Monterey (1979)

    Book  Google Scholar 

  25. Fasshauer, G.E.: Newton iteration with multiquadrics for the solution of nonlinear PDEs. Comput. Math. Appl. 43, 423–438 (2002)

    Article  MathSciNet  Google Scholar 

  26. Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 33, 1239–1245 (2009)

    Article  MathSciNet  Google Scholar 

  27. Golbabai, A., Rabiei, H.: Hybrid shape parameter strategy for the RBF approximation of vibrating systems. Int. J. Comput. Math. 89, 2410–2427 (2012)

    Article  MathSciNet  Google Scholar 

  28. Xiang, S., Wang, K., Ai, Y., Sha, Y., Shi, H.: Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation. Appl. Math. Model. 36, 1931–1938 (2012)

    Article  MathSciNet  Google Scholar 

  29. Golbabai, A., Mohebianfar, E., Rabiei, H.: On the new variable shape parameter strategies for radial basis functions. Comput. Appl. Math. 34, 691–704 (2015)

    Article  MathSciNet  Google Scholar 

  30. Esmaeilbeigi, M., Hosseini, M.M.: A new approach based on the genetic algorithm for finding a good shape parameter in solving partial differential equations by Kansa’s method. Appl. Math. Comput. 249, 419–428 (2014). https://doi.org/10.1016/j.amc.2014.10.012

    Article  MathSciNet  MATH  Google Scholar 

  31. Azarboni, H.R., Keyanpour, M., Yaghouti, M.: Leave-two-out cross validation to optimal shape parameter in radial basis functions. Eng. Anal. Bound. Elem. 100, 204–210 (2019)

    Article  MathSciNet  Google Scholar 

  32. Fallah, A., Jabbari, E., Babaee, R.: Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Comput. Math. Appl. 77, 815–829 (2019)

    Article  MathSciNet  Google Scholar 

  33. Koushki, M., Jabbari, E., Ahmadinia, M.: Evaluating RBF methods for solving PDEs using Padua points distribution. Alexandria Eng. J. 59, 2999–3018 (2020)

    Article  Google Scholar 

  34. Rao, R.V.: Teaching-learning-based optimization algorithm. In: Teaching Learning Based Optimization Algorithm, pp. 9–39. Springer, Berlin (2016)

    Book  Google Scholar 

  35. Ouyang, H.B., Gao, L.Q., Kong, X.Y., Zou, D.X., Li, S.: Teaching-learning based optimization with global crossover for global optimization problems. Appl. Math. Comput. 265, 533–556 (2015). https://doi.org/10.1016/j.amc.2015.05.012

    Article  MathSciNet  MATH  Google Scholar 

  36. Toğan, V.: Design of planar steel frames using teaching–learning based optimization. Eng. Struct. 34, 225–232 (2012)

    Article  Google Scholar 

  37. Yu, K., Wang, X., Wang, Z.: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. J. Intell. Manuf. 27, 831–843 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iran National Science Foundation (Grant Number: 98001721). The authors gratefully acknowledge this financial support.

Funding

Funding was provided by Iran National Science Foundation (Grant Number: INSF-98001721).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analyses were performed by [RB], [MEG], [EJ], and [NK]. The first draft of the manuscript was written by [RB], and all authors commented on previous versions of the manuscript. All authors read and approved the final draft of the manuscript.

Corresponding author

Correspondence to Ehsan Jabbari.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaee, R., Jabbari, E., Eskandari-Ghadi, M. et al. A new algorithm for shape parameter optimization in the multiquadric method for bending beam and elastic plane BVPs. Arch Appl Mech 92, 3109–3125 (2022). https://doi.org/10.1007/s00419-022-02225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02225-y

Keywords

Navigation