Skip to main content
Log in

Analytical investigation of elastic and plastic behavior of rotating double-walled FGM-homogenous hollow shafts

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Cylindrical rotating components have been of special interest in different industries and due to their wide applications such as grinding wheel, drive shaft; the analyses of elastic and plastic stress and strains have been an interesting topic for investigation. Therefore, in this study an analytical elastic and elasto-plastic solution to evaluate the stress field in axisymmetric thick-double-walled cylindrical hollow shafts made of functionally graded materials and homogeneous layers subjected to pressure, temperature gradient, and angular speed are presented. In the first step, by considering the combined different loading condition, a closed-form analytical thermo-elastic solution for radial and circumferential stresses as well as the normalized effective stresses are presented. Then, the starting radius of the plastic deformation by using a completely elastic solution and a failure criterion is determined. In the second stage, the relations for determining the plastic zone radius as well as the radial, circumferential, and effective stresses in both elastic and plastic zones are obtained for three types of functionally graded layers under different combined loading condition. Finally, it will be shown that by using the functionally graded layer, the stress distribution and consequently the yield pattern in the thick-double-walled cylindrical hollow shaft can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({p}_{{i}};\,{p}_{{o}}\) :

Pressures at the inner and outer surfaces of double-walled hollow shaft, respectively

\({r}_{{1}};{r}_{{2}}{;}{r}_{{3}}\) :

Inner, interface, and outer radii of hollow shaft, respectively

\({r}_{{pf}}{;}{r}_{{ph}}\) :

radius of elasto-plastic boundary of FGM, and homogenous part, respectively

\(E_{h};\,K_{h};\,\alpha _{h};\sigma _{yh};\,\rho _{h}\) :

Module of elasticity, Thermal conductivity coefficient, thermal expansion coefficient, yield stress, and density in the homogeneous part of hollow shaft, respectively

\(E_{0f};\, K_{0f};\, \alpha _{of};\sigma _{y0f};\, \rho _{0f}\) :

Constant of Module of elasticity, Thermal conductivity coefficient, thermal expansion coefficient, yield stress, and density in power low relation, respectively

\({\upbeta ;}n_{1};n_{2};n_{3};n_{4}\) :

Power low indices for module of elasticity, thermal conductivity, thermal expansion coefficient, yield stress and density, respectively

\({T}_{{1}};\,{T}_{{2}};\,{T}_{{3}}\) :

Temperatures at the inner, interface, and outer surfaces of double-walled hollow shaft, respectively

\(\sigma _{rh}^{E};\sigma _{{\uptheta }h}^{E};\sigma _{{e}h}^{E}\) :

Elastic radial, tangential, and effective stresses in the homogeneous part of hollow shaft, respectively

\(\sigma _{{\uptheta }f}^{E};\,\sigma _{{\uptheta }f}^{E};\sigma _{{\uptheta }f}^{E}\) :

Elastic radial, tangential, and effective stresses in the FG part of hollow shaft, respectively

\(\sigma _{rh}^{p}{;}\sigma _{{\uptheta }h}^{p};\sigma _{{e}h}^{p}\) :

Plastic radial, tangential, and effective stresses in the homogeneous part of hollow shaft, respectively

\(\sigma _{rf}^{p}{;}\sigma _{{\uptheta }f}^{p};\sigma _{{e}f}^{p}\) :

Plastic radial, tangential, and effective stresses in in the FG part of hollow shaft, respectively

\(u_{f}^{E} ; u_{h}^{E}\) :

elastic radial displacement in FGM and homogeneous part, respectively

\(\varepsilon _{r};\,\varepsilon _{\theta }\) :

Strains at the radial and tangential directions, respectively

\(\vartheta _{h}\), \(\vartheta _{f}\) :

Poisson’s ratio in homogeneous and FG parts of hollow shaft, respectively

References

  1. Shariyat, M., Lavasani, S.M.H., Khaghani, M.: Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method. Appl. Math. Model. 34, 898–918 (2010). https://doi.org/10.1016/j.apm.2009.07.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayat, Y., Ghannad, M., Torabi, H.: Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch. Appl. Mech. 82(2), 229–242 (2012). https://doi.org/10.1007/s00419-011-0552-x

    Article  MATH  Google Scholar 

  3. Hosseini Kordkheili, S.A., Naghdabadi, R.: Thermoelastic analysis of a functionally graded rotating disk. Comp. Struct. 79, 508–516 (2007). https://doi.org/10.1016/j.compstruct.2006.02.010

    Article  MATH  Google Scholar 

  4. Shariyat, M.: Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory. Int. J. Mech. Sci. 65, 24–37 (2012). https://doi.org/10.1016/j.ijmecsci.2012.09.001

    Article  Google Scholar 

  5. Hassani, A., Hojjati, M.H., Mahdavi, E., Alashti, R.A., Farrahi, G.: Thermo-mechanical analysis of rotating disks with non-uniform thickness and material properties. Int. J. Press. Vessel. Piping 98, 95–101 (2012). https://doi.org/10.1016/j.ijpvp.2012.07.010

    Article  Google Scholar 

  6. Fatehi, P., Zamani Nejad, M.: Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells. Int. J. Appl. Mech. 6(4), 1450038–1450058 (2014). https://doi.org/10.1142/S1758825114500380

    Article  Google Scholar 

  7. Zamani Nejad, M., Rastgoo, A., Hadi, A.: Exact elasto-plastic analysis of rotating disks made of functionally graded materials. Int. J. Eng. Sci. 85, 47–57 (2014). https://doi.org/10.1016/j.ijengsci.2014.07.009

    Article  MathSciNet  MATH  Google Scholar 

  8. Haghpanah Jahromi, B., NayebHashemi, H., Vaziri, A.: Elasto-plastic stresses in a functionally graded rotating disk. J. Eng. Mat. Technol. 134, 021004–021015 (2012). https://doi.org/10.1115/1.4006023

    Article  Google Scholar 

  9. Dai, T., Dai, H.L.: Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed. Appl. Math. Modell. 40(17–18), 7689–7707 (2016). https://doi.org/10.1016/j.apm.2016.03.025

    Article  MathSciNet  MATH  Google Scholar 

  10. Loghman, A., Parsa, H.: Exact solution for magneto-thermo-elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer. Int. J. Mech. Sci. 88, 93–99 (2014)

    Article  Google Scholar 

  11. Hajisadeghian, A., Masoumi, A., Parvizi, A.: Investigating themagnetic field effects on thermomechanical stress behavior of thick-walled cylinder with inner FGM layer. J. Thermal Stress. 41(3), 286–301 (2018). https://doi.org/10.1080/01495739.2017.1399307

    Article  Google Scholar 

  12. Nosouhi Dehnavi, F., Parvizi, A.: Investigation of thermo-elasto-plastic behavior of thick-walled spherical vessels with inner functionally graded coatings. Meccanica 52(10), 2421–2438 (2017). https://doi.org/10.1007/s11012-016-0596-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Alikarami, S., Parvizi, A.: Elasto-plastic analysis and finite element simulation of thick-walled functionally graded cylinder subjected to combined pressure and thermal loading. Sci. Eng. Comp. Mater. 24(4), 609–620 (2016). https://doi.org/10.1515/secm-2015-0010

    Article  Google Scholar 

  14. Bayat, Y., Ghannad, M., Torabi, H.: Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch. Appl. Mech. 82, 229–242 (2012). https://doi.org/10.1007/s00419-011-0552-x

    Article  MATH  Google Scholar 

  15. Sburlati, R.: Analytical elastic solutions for pressurized hollow cylinders with internal functionally graded coatings. Comp. Struct. 94, 3592–3600 (2012). https://doi.org/10.1016/j.compstruct.2012.05.018

    Article  Google Scholar 

  16. Rodríguez-Castro, R., Wetherhold, R.C., Kelestemur, M.H.: Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite. Mater. Sci. Eng. A323, 445–456 (2002). https://doi.org/10.1016/S0921-5093(01)01400-9

    Article  Google Scholar 

  17. Sabzikar Boroujerdy, M., Eslami, M.R.: Nonlinear axisymmetric thermomechanical responseof piezo-FGM shallow spherical shells. Arch. Appl. Mech. 83, 1681–1693 (2013). https://doi.org/10.1007/s00419-013-0769-y

    Article  MATH  Google Scholar 

  18. Parvizi, A., Alikarami, S., Asgari, M.: Exact solution for thermoelastoplastic behavior of thick-walled functionally graded sphere under combined pressure and temperature gradient loading. J. Therm. Stress. 39(9), 1152–1170 (2016). https://doi.org/10.1080/01495739.2016.1188614

    Article  Google Scholar 

  19. Parvizi, A., Naghdabadi, R., Arghavani, J.: Analysis of Al A359/SiCp functionally graded cylinder subjected to internal pressure and temperature gradient with elastic-plastic deformation. J. Therm. Stress. 34, 1054–1070 (2011). https://doi.org/10.1080/01495739.2011.605934

    Article  Google Scholar 

  20. Sadeghian, M., Ekhteraei Toussi, H.: Axisymmetric Elastoplasticity of a Temperature-Sensitive Functionally Graded Cylindrical Vessel. J. Press. Vessel Technol. 136(6), 061203–061211 (2014). https://doi.org/10.1115/1.4027445

    Article  Google Scholar 

  21. Incropera, F., Dewitt, D., Bergman, T., Lavine, A.: Fundamentals of Heat and Mass Transfer. One dimensional Steady-State Conduction, 6th edn, pp. 116–119. John Wiley & Sons, New York (2007)

    Google Scholar 

  22. Johnson, W., Meller, P.B.: Engineering Plasticity. The Yield Criteria of Metals, pp. 63–78. Ellis Horwood Limited, England (1983)

    Google Scholar 

  23. Mendelson, A.: Plasticity: Theory and Application. Macmillan, New York (1968)

    Google Scholar 

  24. Akis, T., Eraslan, A.N.: Exact solution of rotating FGM shaft problem in the elastoplastic state of stress. Arch. Appl. Mech. 77, 745–765 (2007). https://doi.org/10.1007/s00419-007-0123-3

    Article  MATH  Google Scholar 

  25. Ozturk, A., Gulgec, M.: Elastic-plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation. Int. J. Eng. Sci. 49, 1047–1061 (2011). https://doi.org/10.1016/j.ijengsci.2011.06.001

    Article  Google Scholar 

  26. Gülgeç, M.: Influence of the Temperature Dependence of the Yield Stress on the Stress Distribution in a Heat Generating Elastic-Plastic Cylinder. ZAMM - Journal of Applied Mathematics and Mechanics. 79(3): 210-216 (1999). https://doi.org/10.1002/(sici)1521-4001(199903)79:3<210::aid-zamm210>3.0.co;2-u

  27. Garner, U., Sayir, M.: Elastic-plastic stress distribution in a rotating solid shaft. J. Appl. Math. Phys. (ZAMP) 35, 601–617 (1984). https://doi.org/10.1007/bf00952107

    Article  MATH  Google Scholar 

  28. Ferro-Ceramic Grinding Inc. Ceramic Properties. Publishing Ferroceramic. http://www.ferroceramic.com/Silicon%20Carbide_table.htm. Accessed 2019 (2012)

  29. MatWeb, Material Property Data. Publishing MatWeb’s services. http://www.matweb.com/search/datasheet.aspx?MatGUID=78300be2300147d6a56d3bbf9182b851. Accessed 2019 (2011)

  30. Hosseini, Kordkheili S., A, Livani M, : Thermoelastic Creep Analysis of a Functionally Graded Various Thickness Rotating Disk with Temperature-dependentMaterial Properties. Int. J Press. Vess. Pip. 111–112, 63–74 (2013). https://doi.org/10.1016/j.ijpvp.2013.05.001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Masoumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajisadeghian, A., Masoumi, A. & Parvizi, A. Analytical investigation of elastic and plastic behavior of rotating double-walled FGM-homogenous hollow shafts. Arch Appl Mech 91, 1343–1369 (2021). https://doi.org/10.1007/s00419-020-01826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01826-9

Keywords

Navigation