Skip to main content
Log in

Free vibration analysis of a non-uniform axially functionally graded cantilever beam with a tip body

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper considers the free vibrations of the non-uniform axially functionally graded cantilever beam with a tip body. It is assumed that the mass center of the tip body is eccentrically displaced in both axial and transverse direction relative to the beam tip. All considerations are carried out within the Euler–Bernoulli beam theory. The in-plane transverse and axial deformations of the beam are considered. It is shown that there is a coupling between the axial and transverse deformations of the cantilever beam due to the tip body mass center eccentricity in the transverse direction. An universal, numerically efficient rigid element method which is able to analyze the cantilever beam with any law of changes of the geometric parameters of the cross section or the characteristics of the material along the beam was formed. Theoretical considerations are accompanied by numerical examples. There is a good agreement of the results obtained with the results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mabie, H.H., Rogers, C.B.: Transverse vibrations of double-tapered cantilever beams with end support and with end mass. J. Acoust. Soc. Am. 55(5), 986–991 (1974)

    Article  Google Scholar 

  2. Goel, R.P.: Transverse vibrations of tapered beams. J. Sound Vib. 47(1), 1–7 (1976)

    Article  MATH  Google Scholar 

  3. Lee, T.W.: Transverse vibrations of a tapered beam carrying a concentrated mass. J. Appl. Mech. T ASME 43(2), 366–367 (1976)

    Article  Google Scholar 

  4. Auciello, N.M.: Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotary inertia and eccentricity. J. Sound Vib. 194(1), 25–34 (1996)

    Article  Google Scholar 

  5. Wu, J.S., Chen, C.T.: An exact solution for the natural frequencies and mode shapes of an immersed elastically restrained wedge beam carrying an eccentric tip mass with mass moment of inertia. J. Sound Vib. 286(3), 549–568 (2005)

    Article  Google Scholar 

  6. Li, X.F., Kang, Y.A., Wu, Y.X.: Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust. 74(3), 413–420 (2013)

    Article  Google Scholar 

  7. Atmane, H.A., Tounsi, A., Meftah, S.A., Belhadj, H.A.: Free vibration behavior of exponential functionally graded beams with varying cross-section. J. Vib. Control 17(2), 311–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ece, M.C., Aydogdu, M., Taskin, V.: Vibration of a variable cross-section beam. Mech. Res. Commun. 34(1), 78–84 (2007)

    Article  MATH  Google Scholar 

  9. Elishakoff, I., Candan, S.: Apparently first closed-form solution for vibrating: inhomogeneous beams. Int. J. Solids Struct. 38(19), 3411–3441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kumar, S., Mitra, A., Roy, H.: Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Int. J. Eng. Sci. Tech. 18(4), 579–593 (2015)

    Article  Google Scholar 

  11. Stephen, N.M.: Vibration of a cantilevered beam carrying a tip heavy body by Dunkerley’s method. J. Sound Vib. 70(3), 463–465 (1980)

    Article  Google Scholar 

  12. Murtagh, P.J., Basu, B., Broderick, B.M.: Simple models for natural frequencies and mode shapes of towers supporting utilities. Comput. Struct. 82(20), 1745–1750 (2004)

    Article  Google Scholar 

  13. Wang, C.Y., Wang, C.M.: Exact vibration solution for exponentially tapered cantilever with tip mass. J. Vib. Acoust. 134(4), 041012 (2012)

    Article  Google Scholar 

  14. Wang, C.Y.: Vibration of a tapered cantilever of constant thickness and linearly tapered width. Arch. Appl. Mech. 83(1), 171–176 (2013)

    Article  MATH  Google Scholar 

  15. Datta, N.: Free transverse vibration of ocean tower. Ocean Eng. 107, 271–282 (2015)

    Article  Google Scholar 

  16. Laura, P.A.A., Gutierrez, R.H.: Vibrations of an elastically restrained cantilever beam of varying cross section with tip mass of finite length. J. Sound Vib. 108(1), 123–131 (1986)

    Article  Google Scholar 

  17. Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  18. Huang, Y., Li, X.F.: A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 329(11), 2291–2303 (2010)

    Article  Google Scholar 

  19. Su, H., Banerjee, J.R.: Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput. Struct. 147, 107–116 (2015)

    Article  Google Scholar 

  20. Zhong, Z., Yu, T.: Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 67(3), 481–488 (2007)

    Article  Google Scholar 

  21. Shahba, A., Rajasekaran, S.: Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials. Appl. Math. Model. 36(7), 3094–3111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yeh, K.Y., Tong, X.H., Ji, Z.Y.: General analytic solution of dynamic response of beams with nonhomogeneity and variable cross-section. Appl. Math. Mech. Engl. 13(9), 779–791 (1992)

    Article  MATH  Google Scholar 

  24. Huo, Y., Wang, Z.: Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam. Arch. Appl. Mech. 86(6), 1147–1161 (2016)

    Article  MATH  Google Scholar 

  25. Zhu, T.L.: Free flapewise vibration analysis of rotating double-tapered Timoshenko beams. Arch. Appl. Mech. 82(4), 479–494 (2012)

    Article  MATH  Google Scholar 

  26. Alshorbagy, A.E., Eltaher, M.A., Mahmoud, F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, J.S.: Analytical and Numerical Methods for Vibration Analyses. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  28. He, P., Liu, Z., Li, C.: An improved beam element for beams with variable axial parameters. Shock Vib. 20(4), 601–617 (2013)

    Article  Google Scholar 

  29. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Der Eisenbau 11, 437–452 (1920)

    Google Scholar 

  30. Schiehlen, W.O., Rauh, J.: Modeling of flexible multibeam systems by rigid-elastic superelements. Revista Brasiliera de Ciencias Mecanicas 8(2), 151–163 (1986)

    Google Scholar 

  31. Parszewski, Z.A., Krodkiewski, J.M., Skoraczynski, J.: Rigid FEM in a case history of boiler feed pump vibration. Comput. Struct. 31(1), 103–110 (1989)

    Article  Google Scholar 

  32. Wang, Y., Huston, R.L.: A lumped parameter method in the nonlinear analysis of flexible multibody systems. Comput. Struct. 50(3), 421–432 (1994)

    Article  MATH  Google Scholar 

  33. Wittbrodt, E., Adamiec-Wójcik, I., Wojciech, S.: Dynamics of Flexible Multibody Systems: Rigid Finite Element Method. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. Šalinić, S., Nikolić, A.: On the determination of natural frequencies of a cantilever beam in free bending vibration: a rigid multibody approach. Forsch Ingenieurwes 77(3–4), 95–104 (2013)

    Google Scholar 

  35. Zhang, H., Wang, C.M., Ruocco, E., Challamel, N.: Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Eng. Struct. 126, 252–263 (2016)

    Article  Google Scholar 

  36. Wang, C.M., Zhang, H., Challamel, H., Duan, W.H.: On boundary conditions for buckling and vibration of nonlocal beams. Eur. J. Mech. A Solid 61, 73–81 (2017)

    Article  MathSciNet  Google Scholar 

  37. Šalinić, S.: An improved variant of Hencky bar-chain model for buckling and bending vibration of beams with end masses and springs. Mech. Syst. Signal Pr. 90, 30–43 (2017)

    Article  Google Scholar 

  38. Nikolić, A., Šalinić, S.: A rigid multibody method for free vibration analysis of beams with variable axial parameters. J. Vib. Control 23(1), 131–146 (2017)

    Article  MathSciNet  Google Scholar 

  39. Obradović, A., Šalinić, S., Trifković, D., Zorić, N., Stokić, Z.: Free vibration of structures composed of rigid bodies and elastic beam segments. J. Sound Vib. 347, 126–138 (2015)

    Article  Google Scholar 

  40. Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  41. Lurie, A.I.: Analytical Mechanics. Springer, New York (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Number ON174016). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Nikolić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, A. Free vibration analysis of a non-uniform axially functionally graded cantilever beam with a tip body. Arch Appl Mech 87, 1227–1241 (2017). https://doi.org/10.1007/s00419-017-1243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1243-z

Keywords

Navigation