Skip to main content
Log in

An efficient method for computing local quantities of interest in elasticity based on finite element error estimation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We present an efficient finite element method for computing the engineering quantities of interest that are linear functionals of displacement in elasticity based on a posteriori error estimate. The accuracy of quantities is greatly improved by adding the approximate cross inner product of errors in the primal and dual problems, which is calculated with an inexpensive gradient recovery type error estimate, to the quantities obtained from the finite element solution. With less CPU time, the accuracy of the improved quantities obtained with the proposed method on the coarse finite element mesh is similar to that of the quantities obtained from the finite element solutions on the finer mesh. Three quantities related to the local displacement, local stress and stress intensity factor are computed with the proposed method to verify its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I. and Rheinboldt W. (1978). Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15: 736–754

    Article  MathSciNet  MATH  Google Scholar 

  2. Ladevèze P. and Leguillon D. (1983). Error estimation procedures in the finite element method and applications. SIAM J. Numer. Anal. 20: 485–509

    Article  MathSciNet  MATH  Google Scholar 

  3. Bank R.E. and Weiser A. (1985). Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44: 283–301

    Article  MathSciNet  MATH  Google Scholar 

  4. Verfürth R. (1996). A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner, Stuttgart

    MATH  Google Scholar 

  5. Ainsworth M. and Oden J.T. (1997). A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142: 1–88

    Article  MathSciNet  MATH  Google Scholar 

  6. Zienkiewicz O.C. and Zhu J.Z. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Internat. J. Numer. Methods Eng. 33: 1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  7. Zienkiewicz O.C. and Zhu J.Z. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33: 1365–1382

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuska, I., Miller, A.: The post-processing approach in the finite element method (parts 1, 2 and 3). Internat. J. Numer. Methods Eng. 20, 1085–1129, 2311–2324 (1984)

    Google Scholar 

  9. Paraschivoiu M., Peraire J. and Patera A.T. (1997). A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 150: 289–312

    Article  MathSciNet  MATH  Google Scholar 

  10. Peraire J. and Patera A.T. (1998). Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In: Ladevèze, P. and Oden, J.T. (eds) Proceedings of the Workshop On New Advances in Adaptive Computational Methods in Mechanics. Elsevier, Amsterdam

    Google Scholar 

  11. Ladevèze P., Rougeot P., Blanchard P. and Moreau J. (1999). Local error estimators for finite element linear analysis. Comput. Methods Appl. Mech. Eng. 176: 231–246

    Article  MATH  Google Scholar 

  12. Prudhomme S. and Oden J.T. (1999). On goal-oriented error estimation for local elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176: 313–331

    Article  MathSciNet  MATH  Google Scholar 

  13. Oden J.T. and Prudhomme S. (2001). Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41: 735–756

    Article  MathSciNet  MATH  Google Scholar 

  14. Sauer-Budge A.M. and Peraire J. (2003). Computing bounds for linear functionals of exact weak solutions to the advection-diffusion-reaction equation. SIAM J. Sci. Comput. 26: 636–652

    Article  MathSciNet  Google Scholar 

  15. Stein E., Rüter M. and Ohnimus S. (2004). Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends. Int. J. Numer. Methods Eng. 60: 103–138

    Article  MATH  Google Scholar 

  16. Sauer-Budge A.M., Bonet J., Huerta A. and Peraire J. (2004). Computing bounds for linear outputs of exact weak solutions to Poisson’s equation. SIAM J. Numer. Anal. 42: 1610–1630

    Article  MathSciNet  MATH  Google Scholar 

  17. Rüter M. and Stein E. (2006). Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195: 251–278

    Article  MATH  Google Scholar 

  18. Parés N., Bonet J., Huerta A. and Peraire J. (2006). The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Comput. Methods Appl. Mech. Eng. 195: 406–429

    Article  MATH  Google Scholar 

  19. Xuan Z.C., Parés N. and Peraire J. (2006). Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity. Comput. Methods Appl. Mech. Eng. 195: 430–443

    Article  MATH  Google Scholar 

  20. Almeida J. and Pereira O. (2006). Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput. Methods Appl. Mech. Eng. 195: 279–296

    Article  MATH  Google Scholar 

  21. Korotov S., Neittaanmäki P. and Repin S. (2003). A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery. J. Numer. Math. 11: 33–53

    MathSciNet  MATH  Google Scholar 

  22. Korotov S. (2006). A posteriori error estimation of goal-oriented quantities for elliptic type BVPs. J. Comput. Appl. Math. 191: 216–227

    Article  MathSciNet  MATH  Google Scholar 

  23. Rüter M., Korotov S. and Steenbock C. (2007). Goal-oriented error estimates based on different FE-spaces for the primal and the dual problem with applications to fracture mechanics. Comput. Mech. 39: 787–797

    Article  MathSciNet  Google Scholar 

  24. Ovall J.S. (2006). Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numer. Math. 102: 543–558

    Article  MathSciNet  MATH  Google Scholar 

  25. Owen D.R.J. and Fawkes A.J. (1983). Engineering fracture mechanics: numerical methods and applications. Pineridge Press Ltd, Swansea

    Google Scholar 

  26. Lee K.H. and Xuan Z.C. (2004). A posteriori output bounds for stress intensity factors in elastic fracture mechanics. Int. J. Fract. 126: 123–142

    Article  Google Scholar 

  27. Xuan Z.C., Khoo B.C. and Li Z.R. (2006). Computing bounds to mixed-mode stress intensity factors in elasticity. Arch. Appl. Mech. 75: 193–209

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, Z.C., Yang, D.Q. & Peng, J.W. An efficient method for computing local quantities of interest in elasticity based on finite element error estimation. Arch Appl Mech 78, 517–529 (2008). https://doi.org/10.1007/s00419-007-0175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0175-4

Keywords

Navigation