Skip to main content
Log in

Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2021

This article has been updated

Abstract

Lysosomal-associated membrane protein 1 (LAMP1) mainly localizes to lysosomes and late endosomes. We herein investigated the intracellular localization of lysosomal membrane proteins in five mammalian cultured cell lines. Rat LAMP1 fused to enhanced green fluorescent protein (EGFP) mostly accumulated at a particular cytoplasmic area and barely co-localized with LysoTracker® Red DND-99 in golden hamster kidney BHK-21 cells and Chinese hamster ovary CHO-K1 cells. Golden hamster, Chinese hamster, and human LAMP1-EGFP showed a similar intracellular distribution to rat LAMP1-EGFP in BHK-21 cells. Endogenous LAMP1 was also detected in a perinuclear area in BHK-21 cells and CHO-K1 cells, and co-localized with rat CD63-EGFP in BHK-21 cells. Moreover, rat LAMP1-DsRed-Monomer co-localized well with the human trans-Golgi network protein 2-EGFP in BHK-21 cells. These results reveal that LAMP1 predominantly localizes to the trans-Golgi network in BHK-21 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22

    CAS  PubMed  Google Scholar 

  • Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387

    CAS  PubMed  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    CAS  PubMed  Google Scholar 

  • Boonen M, Hamer I, Boussac M, Delsaute AF, Flamion B, Garin J, Jadot M (2006) Intracellular localization of p40, a protein identified in a preparation of lysosomal membranes. Biochem J 395:39–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chia PZC, Gleeson PA (2011) The regulation of endosome-to-Golgi retrograde transport by tethers and scaffolds. Traffic 12:939–947

    CAS  PubMed  Google Scholar 

  • Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502

    CAS  PubMed  Google Scholar 

  • Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145

    CAS  PubMed  Google Scholar 

  • Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, Tanaka Y, Lüllmann-Rauch R, Hartmann D, Heeren J, von Figura K, Knecht E, Saftig P (2004) Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 15:3132–3145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda M (1991) Lysosomal membrane glycoproteins. J Biol Chem 266:21327–21330

    CAS  PubMed  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    CAS  PubMed  Google Scholar 

  • Gruenberg J, van der Goot FG (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7:495–504

    CAS  PubMed  Google Scholar 

  • Hirst J, Edgar JR, Esteves T, Darios F, Madeo M, Chang J, Roda RH, Dürr A, Anheim M, Gellera C, Li J, Züchner S, Mariotti C, Stevanin G, Blackstone C, Kruer MC, Robinson MS (2015) Loss of AP-5 results in accumulation of aberrant endolysosomes: defining a new type of lysosomal storage disease. Hum Mol Genet 24:4984–4996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey JS, Peters PJ, Yuan LC, Bonifacino JS (1993) Localization of TGN38 to the trans-Golgi network: involvement of a cytoplasmic tyrosine-containing sequence. J Cell Biol 120:1123–1135

    CAS  PubMed  Google Scholar 

  • Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 16:4231–4242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R (2010) FIP1/RCP binding to golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 21:3041–3053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppi M, Simonsen A, Bremnes B, Vieira A, Callaghan J, Stenmark H, Olkkonen VM (2002) The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 115:899–911

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J (1998) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392:193–197

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1:113–118

    CAS  PubMed  Google Scholar 

  • Kundra R, Kornfeld S (1999) Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem 274:31039–31046

    CAS  PubMed  Google Scholar 

  • Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA (2007) The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 18:4979–4991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lübke T, Lobel P, Sleat D (2009) Proteomics of the lysosome. Biochim Biophys Acta 1793:625–635

    PubMed  Google Scholar 

  • Luzio JP, Brake B, Banting G, Howell KE, Braghetta P, Stanley KK (1990) Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J 270:97–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    CAS  PubMed  Google Scholar 

  • Matsubara H, Tanaka R, Tateishi T, Yoshida H, Yamaguchi M, Kataoka T (2019) The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells. Exp Cell Res 381:223–234

    CAS  PubMed  Google Scholar 

  • Matsuda I, Matsuo K, Matsushita Y, Haruna Y, Niwa M, Kataoka T (2014) The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation. J Biol Chem 289:3876–3887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, von Figura K, Schu P (2000) µ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 19:2193–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mindell JA (2012) Lysosomal acidification mechanisms. Ann Rev Physiol 74:69–86

    CAS  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    CAS  PubMed  Google Scholar 

  • Nakatsu F, Hase K, Ohno H (2014) The role of clathrin adaptor AP-1: polarized sorting and beyond. Membranes 4:747–763

    PubMed  PubMed Central  Google Scholar 

  • Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J (2004) Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 164:1065–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Victoria FJ, Mardones GA, Bonifacino JS (2008) Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol Biol Cell 19:2350–2362

    PubMed  PubMed Central  Google Scholar 

  • Pfeffer SR (2011) Entry at the trans-face of the Golgi. Cold Spring Harb Perspect Biol 3:a005272

    PubMed  PubMed Central  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592

    CAS  PubMed  Google Scholar 

  • Pols MS, van Meel E, Oorschot V, ten Brink C, Fukuda M, Swetha MG, Mayor S, Klumperman J (2013) hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nat Commun 4:1361

    PubMed  Google Scholar 

  • Progida C, Bakke O (2016) Bidirectional traffic between the Golgi and the endosomes—machineries and regulation. J Cell Sci 129:3971–3982

    CAS  PubMed  Google Scholar 

  • Röttger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 111:45–60

    PubMed  Google Scholar 

  • Royle SJ (2006) The cellular functions of clathrin. Cell Mol Life Sci 63:1823–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruvio R, Anne C, Sagné C, Gasnier B (2009) Molecular and cellular basis of lysosomal transmembrane protein dysfunction. Biochim Biophys Acta 1793:636–649

    Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    CAS  PubMed  Google Scholar 

  • Schröder J, Lüllmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schröder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094

    PubMed  Google Scholar 

  • Schröder BA, Wrocklage C, Hasilik A, Saftig P (2010) The proteome of lysosomes. Proteomics 10:4053–4076

    PubMed  Google Scholar 

  • Schwake M, Schröder B, Saftig P (2013) Lysosomal membrane proteins and their central role in physiology. Traffic 14:739–748

    CAS  PubMed  Google Scholar 

  • Scott CC, Vacca F, Gruenberg J (2014) Endosome maturation, transport and functions. Semin Cell Dev Biol 31:2–10

    CAS  PubMed  Google Scholar 

  • Shinkai Y, Yoshida MC, Maeda K, Kobata T, Maruyama K, Yodoi J, Yagita H, Okumura K (1989) Molecular cloning and chromosomal assignment of a human perforin (PFP) gene. Immunogenetics 30:452–457

    CAS  PubMed  Google Scholar 

  • Staudt C, Puissant E, Boonen M (2017) Subcellular trafficking of mammalian lysosomal proteins: an extended view. Int J Mol Sci 18:47

    Google Scholar 

  • Storrie B, White J, Röttger S, Stelzer EHK, Suganuma T, Nilsson T (1998) Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 143:1505–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JM, Reynolds CW (1983) Large granular lymphocyte leukemia. A heterogeneous lymphocytic leukemia in F344 rats. Am J Pathol 111:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wettey FR, Hawkins SFC, Stewart A, Luzio JP, Howard JC, Jackson AP (2002) Controlled elimination of clathrin heavy-chain expression in DT40 lymphocytes. Science 297:1521–1525

    CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Lin X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotech 29:735–741

    CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Drs. Della Reynolds, Craig W. Reynolds, Hideo Yagita, and Rafick-Pierre Sékaly for their kind gifts. We also thank Yoko Yaji and Hisashi Yamada for their contribution to this study. This work was partly supported by JSPS KAKENHI Grant numbers 22658036, 15K14920, and 19H02885 (to T.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Kataoka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, K., Kuwada, S., Nakao, A. et al. Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines. Histochem Cell Biol 153, 199–213 (2020). https://doi.org/10.1007/s00418-019-01842-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-019-01842-z

Keywords

Navigation