Abstract
The relative roles of SULF1 and SULF2 enzymes in tumour growth are controversial, but short SULF1/SULF2 splice variants predominate in human mammary tumours despite their non-detectable levels in normal mammary tissue. Compared with the normal, the level of receptor tyrosine kinase (RTK) activity was markedly increased in triple-positive mammary tumours during later stages of tumour progression showing increased p-EGFR, p-FGFR1 and p-cMet activity in triple-positive but not in triple-negative tumours. The abundance of catalytically inactive short SULF1/SULF2 variants permits high levels of HS sulphation and thus growth driving RTK cell signalling in primary mammary tumours. Also observed in this study, however, was increased N-sulphation detected by antibody 10E4 indicating that not only 6-O sulphation but also N-sulphation may contribute to increased RTK cell signalling in mammary tumours. The levels of such increases in not only SULF1/SULF2 but also in pEGFR, pFGFR1, p-cMet and Smad1/5/8 signalling were further enhanced following lymph node metastasis. The over-expression of Sulf1 and Sulf2 variants in mammary tumour-derived MDA-MB231 and MCF7 cell lines by transfection further confirms Sulf1-/Sulf2-mediated differential modulation of growth. The short variants of both Sulf1 and Sulf2 promoted FGF2-induced MDA-MB231 and MCF7 in vitro growth while full-length Sulf1 inhibited growth supporting in vivo mammary tumour cell signalling patterns of growth. Since a number of mammary tumours become drug resistant to hormonal therapy, Sulf1/Sulf2 inhibition could be an alternative therapeutic approach to target such tumours by down-regulating RTK-mediated cell signalling.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, Landegren U, Kjellén L, Bondjers G, Li JP, Lindahl U, Spillmann D, Betsholtz C, Gerhardt H (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev 21(3):316–331
Bret C, Moreaux J, Schved JF, Hose D, Klein B (2011) SULFs in human neoplasia: implication as progression and prognosis factors. J Transl Med 9:72. doi:10.1186/1479-5876-9-72
Britton DJ, Hutcheson IR, Knowlden JM, Barrow D, Giles M, McClelland RA, Gee JM, Nicholson RI (2006) Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 96(2):131–146
Bush KT, Crawford BE, Garner OB, Nigam KB, Esko JD, Nigam SK (2012) N-sulfation of heparan sulfate regulates early branching events in the developing mammary gland. J Biol Chem 287(50):42064–420670. doi:10.1074/jbc.M112.423327
Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer–An overview and update. Mol Cell Endocrinol 418(3):220–234. doi:10.1016/j.mce.2015.09.035
Dai J, Kitagawa Y, Zhang J, Yao Z, Mizokami A, Cheng S, Nor J, McCauley LK, Taichman RS, Keller ET (2004) Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 64:994–999
David G, Bai XM, Van der Schueren B, Cassiman JJ, Van Den Berghe H (1992) Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol 119(4):961–975
Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, Lowik CW (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblastderived vascular endothelial growth factor A. Endocrinology 143:1545–1553
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666. doi:10.1126/science.293.5535.1663
EL Alarmo KA (2010) Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer 17(2):R123–R139. doi:10.1677/ERC-09-0273
Engstrøm MJ, Opdahl S, Hagen AI, Romundstad PR, Akslen LA, Haugen OA, Vatten LJ, Bofin AM (2013) Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res Treat 140(3):463–473. doi:10.1007/s10549-013-2647-2
Gill R, Hitchins L, Fletcher F, Dhoot GK (2010) Sulf1A and HGF regulate satellite-cell growth. J Cell Sci 123(Pt 11):1873–1883. doi:10.1242/jcs.061242
Gill RB, Day A, Barstow A, Liu H, Zaman G, Dhoot GK (2011) Sulf2 gene is alternatively spliced in mammalian developing and tumour tissues with functional implications. Biochem Biophys Res Commun 414(3):468–473. doi:10.1016/j.bbrc.2011.09.088
Gill RB, Day A, Barstow A, Zaman G, Chenu C, Dhoot GK (2012) Mammalian Sulf1 RNA alternative splicing and its significance to tumour growth regulation. Tumour Biol 33(5):1669–1680. doi:10.1007/s13277-012-0423-2
Gill RM, Michael A, Westley L, Kocher HM, Murphy JI, Dhoot GK (2014) SULF1/SULF2 splice variants differentially regulate pancreatic tumour growth progression. Exp Cell Res 324(2):157–171. doi:10.1016/j.yexcr.2014.04.001
Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Boecker H (2005) First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol 206(3):366–376
Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237. doi:10.1111/bph.13211
King TD, Suto MJ, Li Y (2012) The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 113(1):13–18. doi:10.1002/jcb.23350
Koval A, Ahmed K, Katanaev VL (2016) Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis. Biochem J 473(4):371–381. doi:10.1042/BJ20150913
Lai JP, Yu C, Moser CD, Aderca I, Han T, Garvey TD, Murphy LM, Garrity-Park MM, Shridhar V, Adjei AA, Roberts LR (2006) SULF1 inhibits tumor growth and potentiates the effects of histone deacetylase inhibitors in hepatocellular carcinoma. Gastroenterology 130(7):2130–2144. doi:10.1053/j.gastro.2006.02.056
Lai JP, Sandhu DS, Shire AM, Roberts LR (2008) The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39(1–4):149–158. doi:10.1007/s12029-009-9058-y
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T (2007) The heparanome—the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129(2):290–307
Lemjabbar-Alaoui H, van Zante A, Singer MS, Xue Q, Wang YQ, Tsay D, He B, Jablons DM, Rosen SD (2010) Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis. Oncogene 29(5):635–646. doi:10.1038/onc.2009.365
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185. doi:10.1074/jbc.M205131200
Morimoto-Tomita M, Uchimura K, Bistrup A, Lum DH, Egeblad M, Boudreau N, Werb Z, Rosen SD (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 7(11):1001–1010. doi:10.1593/neo.05496
Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL, Shridhar V (2007) Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282(19):14413–14420. doi:10.1074/jbc.M611395200
Nawroth R, van Zante A, Cervantes S, McManus M, Hebrok M, Rosen SD (2007) Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE 2(4):e392. doi:10.1371/journal.pone.0000392
Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH, Polley MY, Rosen SD, Rowitch DH, Werb Z (2012) Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J Clin Invest 122(3):911–922. doi:10.1172/JCI58215
Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23(8):1739–1748
Sahota AP, Dhoot GK (2009) A novel SULF1 splice variant inhibits Wnt signalling but enhances angiogenesis by opposing SULF1 activity. Exp Cell Res 315(16):2752–2764. doi:10.1016/j.yexcr.2009.06.029
Takashima Y, Keino-Masu K, Yashiro H, Hara S, Suzuki T, van Kuppevelt TH, Masu M, Nagata M (2016) Heparan sulfate 6-O-endosulfatases, Sulf1 and Sulf2, regulate glomerular integrity by modulating growth factor signaling. Am J Physiol Renal Physiol 310(5):F395–408. doi:10.1152/ajprenal.00445.2015
Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2. doi:10.1186/1471-2091-7-2
Ye L, Bokobza SM, Jiang WG (2009) Bone morphogenetic proteins in development and progression of breast cancer and therapeutic potential (review). Int J Mol Med 24(5):591–597
Zaman G, Staines K, Farquharson C, Newton PT, Dudhia J, Chenu C, Pitsillides A, Dhoot GK (2016) Expression of Sulf1 and Sulf2 in cartilage, bone and endochondral fracture healing. Histochem Cell Biol 145(1):67–79
Acknowledgments
This work was supported by RVC research studentships.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Rights and permissions
About this article
Cite this article
Gill, R.M., Mehra, V., Milford, E. et al. Short SULF1/SULF2 splice variants predominate in mammary tumours with a potential to facilitate receptor tyrosine kinase-mediated cell signalling. Histochem Cell Biol 146, 431–444 (2016). https://doi.org/10.1007/s00418-016-1454-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00418-016-1454-3