Skip to main content
Log in

Reduction in Golgi apparatus dimension in the absence of a residential protein, N-acetylglucosaminyltransferase V

Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Various proteins are involved in the generation and maintenance of the membrane complex known as the Golgi apparatus. We have used mutant Chinese hamster ovary (CHO) cell lines Lec4 and Lec4A lacking N-acetylglucosaminyltransferase V (GlcNAcT-V, MGAT5) activity and protein in the Golgi apparatus to study the effects of the absence of a single glycosyltransferase on the Golgi apparatus dimension. Quantification of immunofluorescence in serial confocal sections for Golgi α-mannosidase II and electron microscopic morphometry revealed a reduction in Golgi volume density up to 49 % in CHO Lec4 and CHO Lec4A cells compared to parental CHO cells. This reduction in Golgi volume density could be reversed by stable transfection of Lec4 cells with a cDNA encoding Mgat5. Inhibition of the synthesis of β1,6-branched N-glycans by swainsonine had no effect on Golgi volume density. In addition, no effect on Golgi volume density was observed in CHO Lec1 cells that contain enzymatically active GlcNAcT-V, but cannot synthesize β1,6-branched glycans due to an inactive GlcNAcT-I in their Golgi apparatus. These results indicate that it may be the absence of the GlcNAcT-V protein that is the determining factor in reducing Golgi volume density. No dimensional differences existed in cross-sectioned cisternal stacks between Lec4 and control CHO cells, but significantly reduced Golgi stack hits were observed in cross-sectioned Lec4 cells. Therefore, the Golgi apparatus dimensional change in Lec4 and Lec4A cells may be due to a compaction of the organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GlcNAcT-I:

N-acetylglucosaminyltransferase I

GlcNAcT-V, MGAT5:

N-acetylglucosaminyltransferase V

CHO:

Chinese hamster ovary cells

GlcNAc:

N-acetylglucosamine

Man:

Mannose

L-PHA:

Leukoagglutinating Phaseolus vulgaris lectin

Dig:

Digoxigenin

References

  • Acharya U, Malhotra V (1996) Reconstitution of Golgi stacks from vesiculated Golgi membranes in permeabilized cells. Semin Cell Dev Biol 7:511–516

    Google Scholar 

  • Allan V (1996) Role of motor proteins in organizing the endoplasmic reticulum and Golgi apparatus. Semin Cell Dev Biol 7:335–342

    CAS  Google Scholar 

  • Barr FA, Warren G (1996) Disassembly and reassembly of the Golgi apparatus. Semin Cell Dev Biol 7:505–510

    CAS  Google Scholar 

  • Barr FA, Puype M, Vandekerckhove J, Warren G (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91:253–262

    CAS  PubMed  Google Scholar 

  • Boal F, Guetzoyan L, Sessions RB, Zeghouf M, Spooner RA, Lord JM, Cherfils J, Clarkson GJ, Roberts LM, Stephens DJ (2010) LG186: an inhibitor of GBF1 function that causes Golgi disassembly in human and canine cells. Traffic 11:1537–1551

    CAS  PubMed  Google Scholar 

  • Boncompain G, Perez F (2013) The many routes of Golgi-dependent trafficking. Histochem Cell Biol 140:251–260

    CAS  PubMed  Google Scholar 

  • Burkhardt JK (1998) The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim Biophys Acta Mol Cell Res 1404:113–126

    CAS  Google Scholar 

  • Chaney W, Sundaram S, Friedman N, Stanley P (1989) The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase. J Cell Biol 109:2089–2096

    CAS  PubMed  Google Scholar 

  • Chia P, Gunn P, Gleeson P (2013) Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol 140:307–315

    CAS  PubMed  Google Scholar 

  • Clermont Y, Rambourg A, Hermo L (1995) Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat Rec 242:289–301

    CAS  PubMed  Google Scholar 

  • Colanzi A, Mironov A, Weigert R, Limina C, Flati S, Cericola C, Di Tullio G, Di Girolamo M, Corda D, De Matteis MA, Luini A (1997) Brefeldin A-induced ADP-ribosylation in the structure and function of the Golgi complex. Adv Exp Med Biol 419:331–335

    CAS  PubMed  Google Scholar 

  • Cole NB, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-Schwartz J (1996) Diffusional mobility of Golgi proteins in membranes of living cells. Science 273:797–801

    CAS  PubMed  Google Scholar 

  • Cummings R, Kornfeld S (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem 257:11230–11234

    CAS  PubMed  Google Scholar 

  • Day KJ, Staehelin LA, Glick BS (2013) A three-stage model of Golgi structure and function. Histochem Cell Biol 140:239–249

    CAS  PubMed  Google Scholar 

  • Dennis J (1999) Protein glycosylation in development and disease. BioEssays 21:412–421

    CAS  PubMed  Google Scholar 

  • Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585

    CAS  PubMed  Google Scholar 

  • Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139:337–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunphy WG, Rothman JE (1983) Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J Cell Biol 97:270–275

    CAS  PubMed  Google Scholar 

  • Egea G, Lazaro-Dieguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18:168–178

    CAS  PubMed  Google Scholar 

  • Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E (2013) Actin acting at the Golgi. Histochem Cell Biol 140:347–360

    CAS  PubMed  Google Scholar 

  • Farquhar M, Hauri H-P (1997) Protein sorting and vesicular traffic in the Golgi apparatus. In: Berger E, Roth J (eds) The Golgi apparatus. Birkhäuser Verlag, Basel, pp 63–129

    Google Scholar 

  • Feinstein TN, Linstedt AD (2008) GRASP55 regulates Golgi ribbon formation. Mol Biol Cell 19:2696–2707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita Y, Okamoto K, Sakurai A, Kusaka H, Aizawa H, Mihara B, Gonatas NK (2002) The Golgi apparatus is fragmented in spinal cord motor neurons of amyotrophic lateral sclerosis with basophilic inclusions. Acta Neuropathol 103:243–247

    CAS  PubMed  Google Scholar 

  • Goldberg DE, Kornfeld S (1983) Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem 258:3159–3165

    CAS  PubMed  Google Scholar 

  • Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312

    CAS  PubMed  Google Scholar 

  • Griffiths G, Fuller S, Back R, Hollinshead M, Pfeiffer S, Simons K (1989) The dynamic nature of the Golgi complex. J Cell Biol 108:277–297

    CAS  PubMed  Google Scholar 

  • Guo Y, Linstedt AD (2006) COPII-Golgi protein interactions regulate COPII coat assembly and Golgi size. J Cell Biol 174:53–63

    CAS  PubMed  Google Scholar 

  • Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA (2007) Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 120:2997–3010

    CAS  PubMed  Google Scholar 

  • Han H-M, Bouchet-Marquis C, Huebinger J, Grabenbauer M (2013) Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol. doi:10.1007/s00418-013-1136-3

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141:51–59

    CAS  PubMed  Google Scholar 

  • Hermann R, Walther P, Muller M (1996) Immunogold labeling in scanning electron microscopy. Histochem Cell Biol 106:31–39

    CAS  PubMed  Google Scholar 

  • Hermo L, Smith C (1998) The structure of the Golgi apparatus: a sperm’s eye view in principal epithelial cells of rat epididymis. Histochem Cell Biol 109:431–447

    CAS  PubMed  Google Scholar 

  • Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7:540–550

    CAS  PubMed  Google Scholar 

  • Karnovsky M (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. Abstracts of Fourteenth Annual Meeting American Society of Cell Biology, p 114

  • Klumperman J (2011) Architecture of the Mammalian Golgi. Cold Spring Harb Perspect Biol 3:a005181

    PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Ann Rev Biochem 54:631–664

    CAS  PubMed  Google Scholar 

  • Kreis T, Goodson H, Perez F, Rönnholm R (1997) Golgi apparatus-cytoskeleton interactions. In: Berger E, Roth J (eds) The Golgi apparatus. Birkhäuser Verlag, Basel, pp 179–193

    Google Scholar 

  • Kumar R, Yang J, Larsen R, Stanley P (1990) Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci USA 87:9948–9952

    CAS  PubMed  Google Scholar 

  • Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of β-galactoside α2,6 sialyltransferase. J Biol Chem 264:13848–13855

    CAS  PubMed  Google Scholar 

  • Lehle L, Tanner W (1995) Protein glycosylation in yeast. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins, vol 29a. Elsevier, Amsterdam, pp 475–509

    Google Scholar 

  • Lin YC, Chiang TC, Liu YT, Tsai YT, Jang LT, Lee FJ (2011) ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci 124:4014–4026

    CAS  PubMed  Google Scholar 

  • Lowe M, Rabouille C, Nakamura N, Watson R, Jackman M, Jamsa E, Rahman D, Pappin DJC, Warren G (1998) Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94:783–793

    CAS  PubMed  Google Scholar 

  • Lujan HD, Marotta A, Mowatt MR, Sciaky N, Lippincott-Schwartz J, Nash TE (1995) Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem 270:4612–4618

    CAS  PubMed  Google Scholar 

  • Machamer C (2013) Accommodation of large cargo within Golgi cisternae. Histochem Cell Biol 140:261–269

    CAS  PubMed  Google Scholar 

  • Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10:1135–1145

    CAS  PubMed  Google Scholar 

  • Manolea F, Claude A, Chun J, Rosas J, Melancon P (2008) Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol Biol Cell 19:523–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Alonso E, Tomás M, Martínez-Menárguez J (2013) Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 140:327–339

    PubMed  Google Scholar 

  • Monetta P, Slavin I, Romero N, Alvarez C (2007) Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol Biol Cell 18:2400–2410

    CAS  PubMed Central  PubMed  Google Scholar 

  • MorinGanet MN, Rambourg A, Clermont Y, Kepes F (1998) Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in sec23 and sec18 Saccharomyces cerevisiae mutants. Anat Rec 251:256–264

    CAS  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    CAS  PubMed  Google Scholar 

  • Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G (1997) The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89:445–455

    CAS  PubMed  Google Scholar 

  • Nelson D, Alvarez C, Gao Y, Garcia-Mata R, Fialkowski E, Sztul E (1998) The membrane transport factor TAP/p115 cycles between the Golgi and earlier secretory compartments and contains distinct domains required for its localization and function. J Cell Biol 143:319–331

    CAS  PubMed  Google Scholar 

  • Nilsson T, Pypaert M, Hoe MH, Slusarewicz P, Berger EG, Warren G (1993) Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J Cell Biol 120:5–13

    CAS  PubMed  Google Scholar 

  • Nilsson T, Rabouille C, Hui N, Watson R, Warren G (1996) The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 109:1975–1989

    CAS  PubMed  Google Scholar 

  • Noske AB, Costin AJ, Morgan GP, Marsh BJ (2008) Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. J Struct Biol 161:298–313

    PubMed Central  PubMed  Google Scholar 

  • Palcic MM, Ripka J, Kaur KJ, Shoreibah M, Hindsgaul O, Pierce M (1990) Regulation of N-acetylglucosaminyltransferase V activity. Kinetic comparisons of parental, Rous sarcoma virus-transformed BHK, and l-phytohemagglutinin-resistant BHK cells using synthetic substrates and an inhibitory substrate analog. J Biol Chem 265:6759–6769

    CAS  PubMed  Google Scholar 

  • Partridge EA, LeRoy C, DiGuglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    CAS  PubMed  Google Scholar 

  • Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Meth Enzymol 416:159–182

    CAS  PubMed  Google Scholar 

  • Polishchuk R, Lutsenko S (2013) Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 140:285–295

    CAS  PubMed  Google Scholar 

  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJM, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85

    CAS  PubMed  Google Scholar 

  • Presley JF, Smith C, Hirschberg K, Miller C, Cole NB, Zaal KJM, Lippincott-Schwartz J (1998) Golgi membrane dynamics. Mol Biol Cell 9:1617–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Presley JF, Ward TH, Pfeifer AC, Siggia ED, Phair RD, Lippincott-Schwartz J (2002) Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417:187–193

    CAS  PubMed  Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Sacharomyces cerevisiae Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puthalakath H, Burke J, Gleeson PA (1996) Glycosylation defect in Lec1 Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene. J Biol Chem 271:27818–27822

    CAS  PubMed  Google Scholar 

  • Puthenveedu MA, Linstedt AD (2001) Evidence that Golgi structure depends on a p115 activity that is independent of the vesicle tether components giantin and GM130. J Cell Biol 155:227–237

    CAS  PubMed  Google Scholar 

  • Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8:238–248

    CAS  PubMed  Google Scholar 

  • Rabouille C, Kondylis V (2007) Golgi ribbon unlinking: an organelle-based G2/M checkpoint. Cell Cycle 6:2723–2729

    CAS  PubMed  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995a) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108:1617–1627

    CAS  PubMed  Google Scholar 

  • Rabouille C, Levine TP, Peters JM, Warren G (1995b) An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82:905–914

    CAS  PubMed  Google Scholar 

  • Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92:603–610

    CAS  PubMed  Google Scholar 

  • Radulescu AE, Mukherjee S, Shields D (2011) The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J Biol Chem 286:21915–21926

    CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y (1997) Three-dimensional structure of the Golgi apparatus in mammalian cells. In: Berger E, Roth J (eds) The Golgi apparatus. Birkhäuser Verlag, Basel, pp 37–61

    Google Scholar 

  • Rambourg A, Clermont Y, Chretien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec 235:353–362

    CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Ovtracht L, Kepes F (1995) Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: a comparative study. Anat Rec 243:283–293

    CAS  PubMed  Google Scholar 

  • Romero N, Dumur CI, Martinez H, García IA, Monetta P, Slavin I, Sampieri L, Koritschoner N, Mironov AA, De Matteis MA, Alvarez C (2013) Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Mol Biol Cell 24:617–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roth J, Berger EG (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans—Golgi cisternae. J Cell Biol 93:223–229

    CAS  PubMed  Google Scholar 

  • Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC (1985) Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43:287–295

    CAS  PubMed  Google Scholar 

  • Roth J, Taatjes DJ, Warhol MJ (1989) Prevention of non-specific interactions of gold-labeled reagents on tissue sections. Histochemistry 92:47–56

    CAS  PubMed  Google Scholar 

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506

    CAS  PubMed  Google Scholar 

  • Sandvig K, Skotland T, van Deurs B, Klokk TI (2013) Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 140:317–326

    CAS  PubMed  Google Scholar 

  • Sciaky N, Presley J, Smith C, Zaal KJM, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of Brefeldin A visualized in living cells. J Cell Biol 139:1137–1155

    CAS  PubMed  Google Scholar 

  • Seelentag WK, Li WP, Schmitz SF, Metzger U, Aeberhard P, Heitz PU, Roth J (1998) Prognostic value of β1,6-branched oligosaccharides in human colorectal carcinoma. Cancer Res 58:5559–5564

    CAS  PubMed  Google Scholar 

  • Sengupta D, Linstedt AD (2011) Control of organelle size: the Golgi complex. Ann Rev Cell Dev Biol 27:57–77

    CAS  Google Scholar 

  • Sengupta D, Truschel S, Bachert C, Linstedt AD (2009) Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J Cell Biol 186:41–55

    CAS  PubMed  Google Scholar 

  • Shoreibah M, Perng GS, Adler B, Weinstein J, Basu R, Cupples R, Wen DZ, Browne JK, Buckhaults P, Fregien N, Pierce M (1993) Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J Biol Chem 268:15381–15385

    CAS  PubMed  Google Scholar 

  • Shorter J, Warren G (2002) Golgi architecture and inheritance. Ann Rev Cell Dev Biol 18:379–420

    CAS  Google Scholar 

  • Shorter J, Watson R, Giannakou ME, Clarke M, Warren G, Barr FA (1999) GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J 18:4949–4960

    CAS  PubMed  Google Scholar 

  • Stanley P, Ioffe E (1995) Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J 9:1436–1444

    CAS  PubMed  Google Scholar 

  • Stanley P, Sudo T (1981) Microheterogeneity among carbohydrate structure at the cell surface may be important in recognition phenomena. Cell 23:763–769

    CAS  PubMed  Google Scholar 

  • Stanley P, Caillibot V, Siminovitch L (1975) Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell 6:121–128

    CAS  PubMed  Google Scholar 

  • Stanley P, Vivona G, Atkinson P (1982) Carbohydrate heterogeneity of vesicular stomatitis virus G glycoprotein allows localization of the defect in a glycosylation mutant of CHO cells. Arch Biochem Biophys 219:128–139

    CAS  PubMed  Google Scholar 

  • Stieber A, Chen YJ, Wei S, Mourelatos Z, Gonatas J, Okamoto K, Gonatas NK (1998) The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications. Acta Neuropathol 95:245–253

    CAS  PubMed  Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279

    CAS  PubMed  Google Scholar 

  • Tillmann K, Millarte V, Farhan H (2013) Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction. Histochem Cell Biol 140:297–306

    CAS  PubMed  Google Scholar 

  • Tomas M, Marin MP, Martinez-Alonso E, Esteban-Pretel G, Diaz-Ruiz A, Vazquez-Martinez R, Malagon MM, Renau-Piqueras J, Martinez-Menarguez JA (2012) Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport. Histochem Cell Biol 138:489–501

    CAS  PubMed  Google Scholar 

  • Uemura T, Nakano A (2013) Plant TGNs: dynamics and physiological functions. Histochem Cell Biol 140:341–345

    CAS  PubMed  Google Scholar 

  • Velasco A, Hendricks L, Moremen KW, Tulsiani DRP, Touster O, Farquhar MG (1993) Cell type-dependent variations in the subcellular distribution of alpha-mannosidase-I and alpha-mannosidase-II. J Cell Biol 122:39–51

    CAS  PubMed  Google Scholar 

  • Warren G (2013) Transport through the Golgi in Trypanosoma brucei. Histochem Cell Biol 140:235–238

    CAS  PubMed  Google Scholar 

  • Weibel E (1979) Stereological methods. 1. Practical methods for biological morphometry. Academic Press, New York

    Google Scholar 

  • Weinstein J, Sundaram S, Wang XH, Delgado D, Basu R, Stanley P (1996) A point mutation causes mistargeting of Golgi GlcNAc-TV in the Lec4A Chinese hamster ovary glycosylation mutant. J Biol Chem 271:27462–27469

    CAS  PubMed  Google Scholar 

  • Willett R, Ungar D, Lupashin V (2013) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283

    CAS  PubMed  Google Scholar 

  • Wilson BS, Nuoffer C, Meinkoth JL, Mccaffery M, Feramisco JR, Balch WE, Farquhar MG (1994) A rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J Cell Biol 125:557–571

    CAS  PubMed  Google Scholar 

  • Xiang Y, Wang Y (2010) GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188:237–251

    CAS  PubMed  Google Scholar 

  • Yadav S, Puthenveedu MA, Linstedt AD (2012) Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell 23:153–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Rosenwald A, Willingham M, Skuntz S, Clark J, Kahn R (1994) Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J Cell Biol 124:289–300

    CAS  PubMed  Google Scholar 

  • Zhu X, Kaverina I (2013) Golgi as an MTOC: making microtubules for its own good. Histochem Cell Biol 140:361–367

    CAS  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H (ed) The sugar code. Wiley-VCH, Weinheim, pp 87–110

    Google Scholar 

  • Zuber C, Li W-P, Roth J (1998) Blot analysis with lectins for the evaluation of glycoproteins in cultured cells and tissues. In: Rhodes JM, Milton JD (eds) Methods in molecular biology series. Humana Press, Totowa, pp 159–166

    Google Scholar 

Download references

Acknowledgments

We are grateful to Kelley Moremen for the Golgi α-mannosidase II antibody. This work was supported by the Swiss National Science Foundation (to J. R.) and the National Cancer Institute RO1 36434 (to P. S.) and partially supported by the Albert Einstein Cancer Center NCI PO1 13330 (to P. S.). P. S. thanks Subha Sundaram for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Z., Zuber, C., Pierce, M. et al. Reduction in Golgi apparatus dimension in the absence of a residential protein, N-acetylglucosaminyltransferase V. Histochem Cell Biol 141, 153–164 (2014). https://doi.org/10.1007/s00418-013-1146-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1146-1

Keywords

Navigation