Skip to main content

Advertisement

Log in

Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Dystrophic muscles suffer from enhanced oxidative stress. We have investigated whether administration of an antioxidant, epigallocatechin-3-gallate (EGCG), a component of green tea, reduces their oxidative stress and pathophysiology in mdx mice, a mild phenotype model of human Duchenne-type muscular dystrophy. EGCG (5 mg/kg body weight in saline) was injected subcutaneously 4× a week into the backs of C57 normal and dystrophin-deficient mdx mice for 8 weeks after birth. Saline was injected into normal and mdx controls. EGCG had almost no observable effects on normal mice or on the body weights of mdx mice. In contrast, it produced the following improvements in the blood chemistry, muscle histology, and electrophysiology of the treated mdx mice. First, the activities of serum creatine kinase were reduced to normal levels. Second, the numbers of fluorescent lipofuscin granules per unit volume of soleus and diaphragm muscles were significantly decreased by about 50% compared to the numbers in the corresponding saline-treated controls. Third, in sections of diaphragm and soleus muscles, the relative area occupied by histologically normal muscle fibres increased significantly 1.5- to 2-fold whereas the relative areas of connective tissue and necrotic muscle fibres were substantially reduced. Fourth, the times for the maximum tetanic force of soleus muscles to fall by a half increased to almost normal values. Fifth, the amount of utrophin in diaphragm muscles increased significantly by 17%, partially compensating for the lack of dystrophin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agbulut O, Li Z, Mouly V, Butler-Browne GS (1996) Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain isoforms. Biol Cell 88:131–135

    Article  PubMed  CAS  Google Scholar 

  • Barker T, Traber MG (2007) From animals to humans: evidence linking oxidative stress as a causative factor in muscle atrophy. J Physiol 583:421–422

    Article  PubMed  CAS  Google Scholar 

  • Barton ER, Morris L, Kawana M, Bish LT, Toursel T (2005) Systemic administration of l-arginine benefits mdx skeletal muscle function. Muscle Nerve 32:751–760

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  • Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT (2002) Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 75:749–753

    PubMed  CAS  Google Scholar 

  • Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Burdi R, Didonna MP, Pignol B, Nico B, Mangieri D, Rolland JF, Camerino C, Zallone A, Ferro P, Andreetta F, Confalonieri P, De Luca A (2006) First evaluation of the potential effectiveness in muscular dystrophy of a novel chimeric compound, BN 82270, acting as calpain-inhibitor and anti-oxidant. Neuromuscul Disord 16:237–248

    Article  PubMed  Google Scholar 

  • Chakkalakal JV, Thompson J, Parks RJ, Jasmin BJ (2005) Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J 19:880–891

    Article  PubMed  CAS  Google Scholar 

  • Clerk A, Morris GE, Dubowitz V, Davies KE, Sewry CA (1993) Dystrophin-related protein, utrophin, in normal and dystrophic human fetal skeletal muscle. Histochem J 25:554–561

    PubMed  CAS  Google Scholar 

  • Courdier-Fruh I, Barman L, Briguet A, Meier T (2002) Glucocorticoid-mediated regulation of utrophin levels in human muscle fibers. Neuromuscul Disord 12(Suppl 1):S95–S104

    Article  PubMed  Google Scholar 

  • Dalkilic I, Kunkel LM (2003) Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev 13:231–238

    Article  PubMed  CAS  Google Scholar 

  • Disatnik MH, Dhawan J, Yu Y, Beal MF, Whirl MM, Franco AA, Rando TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161:77–84

    Article  PubMed  CAS  Google Scholar 

  • Disatnik MH, Chamberlain JS, Rando TA (2000) Dystrophin mutations predict cellular susceptibility to oxidative stress. Muscle Nerve 23:784–792

    Article  PubMed  CAS  Google Scholar 

  • Dorchies OM, Wagner S, Vuadens O, Waldhauser K, Buetler TM, Kucera P, Ruegg UT (2006) Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290:C616–C625

    Article  PubMed  CAS  Google Scholar 

  • Dudley RWR, Danialou G, Govindaraju K, Lands L, Eidelman DH, Petrof BJ (2006) Sarcolemma damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am J Pathol 168:1276–1287

    Article  PubMed  CAS  Google Scholar 

  • Ervasti JM (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772:108–117

    PubMed  CAS  Google Scholar 

  • Gerhardt W, Wulff K (1983) Creatine kinase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 508–539

    Google Scholar 

  • Goodin MG, Rosengren RJ (2003) Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse. Toxicol Sci 76:262–270

    Article  PubMed  CAS  Google Scholar 

  • Gramolini AO, Burton EA, Tinsley JM, Ferns MJ, Cartaud A, Cartaud J, Davies KE, Lunde JA, Jasmin BJ (1998) Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J Biol Chem 273:736–743

    Article  PubMed  CAS  Google Scholar 

  • Hirst RC, McCullagh KJ, Davies KE (2005) Utrophin upregulation in Duchenne muscular dystrophy. Acta Myol 24:209–216

    PubMed  CAS  Google Scholar 

  • Khurana TS, Davies KE (2003) Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2:379–390

    Article  PubMed  CAS  Google Scholar 

  • Khurana TS, Watkins SC, Chafey P, Chelly J, Tomé FM, Fardeau M, Kaplan JC, Kunkel LM (1991) Immunolocalization and developmental expression of dystrophin related protein in skeletal muscle. Neuromuscul Disord 1:185–194

    Article  PubMed  CAS  Google Scholar 

  • Krag TO, Bogdanovich S, Jensen CJ, Fischer MD, Hansen-Schwartz J, Javazon EH, Flake AW, Edvinsson L, Khurana TS (2004) Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci USA 101:13856–13860

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG, Yang CS (2003) Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 133:4172–4177

    PubMed  CAS  Google Scholar 

  • Lambert JD, Kim DH, Zheng R, Yang CS (2006a) Transdermal delivery of (-)-epigallocatechin-3-gallate, a green tea polyphenol, in mice. J Pharm Pharmacol 58:599–604

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Lee MJ, Diamond L, Ju J, Hong J, Bose M, Newmark HL, Yang CS (2006b) Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab Dispos 34:8–11

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Meng X, Li C, Sang S, Patten C, Sheng S, Hong J, Bai N, Winnik B, Ho CT, Yang CS (2003) Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 31:452–461

    Article  PubMed  CAS  Google Scholar 

  • Messina S, Altavilla D, Aguennouz M, Seminara P, Minutoli L, Monici MC, Bitto A, Mazzeo A, Marini H, Squadrito F, Vita G (2006) Lipid peroxidation inhibition blunts nuclear factor-κB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168:918–926

    Article  PubMed  CAS  Google Scholar 

  • Miura P, Jasmin BJ (2006) Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 12:122–129

    Article  PubMed  CAS  Google Scholar 

  • Nakae Y, Stoward PJ, Shono M, Matsuzaki T (2001) Most apoptotic cells in mdx diaphragm muscle contain accumulated lipofuscin. Histochem Cell Biol 115:205–214

    PubMed  CAS  Google Scholar 

  • Nakae Y, Stoward PJ, Kashiyama T, Shono M, Akagi A, Matsuzaki T, Nonaka I (2004) Early onset of lipofuscin accumulation in dystrophin-deficient skeletal muscles of DMD patients and mdx mice. J Mol Histol 35:489–499

    Article  PubMed  CAS  Google Scholar 

  • Nakae Y, Stoward PJ, Bespalov IA, Melamede RJ, Wallace SS (2005) A new technique for the quantitative assessment of 8-oxoguanine in nuclear DNA as a marker of oxidative stress. Application to dystrophin-deficient DMD skeletal muscles. Histochem Cell Biol 124:335–345

    Article  PubMed  CAS  Google Scholar 

  • Nakae Y, Shono M, Stoward PJ (2006a) Assessment of oxidative stress in dystrophin-deficient dystrophic muscles of mice. Acta Anat Nippon 81(Suppl):214

    Google Scholar 

  • Nakae Y, Hirasaka K, Goto J, Nikawa T, Shono M, Yoshida M, Stoward PJ (2006b) Subcutaneous injection of epigallocatechin gallate into dystrophin-deficient mdx mice ameliorates muscular dystrophy. In: Proceedings of the seventh joint meeting of the Histochemical Societry and the Japanese Society of Histochemistry and Cytochemistry, p 156

  • Nakae Y, Hirasaka K, Goto J, Shono M, Yoshida M, Stoward PJ (2007) Subcutaneous injection of epigallocatechin gallate improves dystrophin-deficient muscular dystrophy in mdx mice and upregulates utrophin expression. Acta Anat Nippon 82:245

    Google Scholar 

  • Narciso L, Fortini P, Pajalunga D, Franchitto A, Liu P, Degan P, Frechet M, Demple B, Crescenzi M, Dogliotti E (2007) Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury. Proc Natl Acad Sci USA 104:17010–17015

    Article  PubMed  CAS  Google Scholar 

  • Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, Campbell KP (1991) Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7:499–508

    Article  PubMed  CAS  Google Scholar 

  • Pasquini F, Guerin C, Blake D, Davies K, Karpati G, Holland P (1995) The effect of glucocorticoids on the accumulation of utrophin by cultured normal and dystrophic human skeletal muscle satellite cells. Neuromuscul Disord 5:105–114

    Article  PubMed  CAS  Google Scholar 

  • Passaquin AC, Metzinger L, Léger JJ, Warter JM, Poindron P (1993) Prednisolone enhances myogenesis and dystrophin-related protein in skeletal muscle cell cultures from mdx mouse. J Neurosci Res 35:363–372

    Article  PubMed  CAS  Google Scholar 

  • Rando TA (2002) Oxidative stress and the pathogenesis of muscular dystrophies. Am J Phys Med Rehabil 81:S175–S186

    Article  PubMed  Google Scholar 

  • Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8:14–21

    Article  PubMed  CAS  Google Scholar 

  • Sewry CA, Nowak KJ, Ehmsen JT, Davies KE (2005) A and B utrophin in human muscle and sarcolemmal A-utrophin associated with tumours. Neuromuscul Disord 15:779–785

    Article  PubMed  CAS  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  PubMed  CAS  Google Scholar 

  • Takemitsu M, Ishiura S, Koga R, Kamakura K, Arahata K, Nonaka I, Sugita H (1991) Dystrophin-related protein in the fetal and denervated skeletal muscles of normal and mdx mice. Biochem Biophys Res Commun 180:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102:1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Voisin V, Sébrié C, Matecki S, Yu H, Gillet B, Ramonatxo M, Israël M, De la Porte S (2005) l-arginine improves dystrophic phenotype in mdx mice. Neurobiol Dis 20:123–130

    Article  PubMed  CAS  Google Scholar 

  • Weir AP, Burton EA, Harrod G, Davies KE (2002) A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J Biol Chem 277:45285–45290

    Article  PubMed  CAS  Google Scholar 

  • Weir AP, Morgan JE, Davies KE (2004) A-utrophin up-regulation in mdx skeletal muscle is independent of regeneration. Neuromuscul Disord 14:19–23

    Article  PubMed  Google Scholar 

  • Williams IA, Allen DG (2007) The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 293:H1969–H1977

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li J, Tsao YP, Dressman D, Hoffman EP, Watchko JF (2000) Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 74:1436–1442

    Article  PubMed  CAS  Google Scholar 

  • Zaccagnini G, Martelli F, Magenta A, Cencioni C, Fasanaro P, Nicoletti C, Biglioli P, Pelicci PG, Capogrossi MC (2007) p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia. J Biol Chem 282:31453–31459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jun Ishibashi and Dr. Akio Hiura (University of Tokushima Graduate School, Japan), and Ms. Akiko Oka (Daiich Kikai Co., Ltd, Tokushima, Japan) for their instruction of Western blotting, mouse injection techniques and real-time RT-PCR, and Professor Juichiro Osame (Intellectual Property Office, University of Tokushima) for his continuous encouragement. We are also grateful for constructive comments from Professor Urs T. Ruegg (University of Geneva, Switzerland). This work was supported by research grants to YN from the Japan Society for the Promotion of Science and the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Nakae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakae, Y., Hirasaka, K., Goto, J. et al. Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 129, 489–501 (2008). https://doi.org/10.1007/s00418-008-0390-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0390-2

Keywords

Navigation