Skip to main content
Log in

New ways of looking at synapses

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Current concepts of synaptic fine-structure are derived from electron microscopic studies of tissue fixed by chemical fixation using aldehydes. However, chemical fixation with glutaraldehyde and paraformaldehyde and subsequent dehydration in ethanol result in uncontrolled tissue shrinkage. While electron microscopy allows for the unequivocal identification of synaptic contacts, it cannot be used for real-time analysis of structural changes at synapses. For the latter purpose advanced fluorescence microscopy techniques are to be applied which, however, do not allow for the identification of synaptic contacts. Here, two approaches are described that may overcome, at least in part, some of these drawbacks in the study of synapses. By focusing on a characteristic, easily identifiable synapse, the mossy fiber synapse in the hippocampus, we first describe high-pressure freezing of fresh tissue as a method that may be applied to study subtle changes in synaptic ultrastructure associated with functional synaptic plasticity. Next, we propose to label presynaptic mossy fiber terminals and postsynaptic complex spines on CA3 pyramidal neurons by different fluorescent dyes to allow for the real-time monitoring of these synapses in living tissue over extended periods of time. We expect these approaches to lead to new insights into the structure and function of central synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acsády L, Kamondi A, Sik A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    PubMed  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238

    Google Scholar 

  • Bischofberger J, Engel D, Frotscher M, Jonas P (2006) Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network. Pflügers Arch Eur J Physiol 453:361–372

    Article  CAS  Google Scholar 

  • Blackstad TW, Kjaerheim A (1961) Special axodendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 117:113–159

    Article  Google Scholar 

  • Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182

    Article  PubMed  CAS  Google Scholar 

  • Engert E, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 339:66–70

    Google Scholar 

  • Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M (1985) Mossy fibres form synapses with identified pyramidal basket cells in the CA3 region of the guinea pig hippocampus: a combined Golgi-electron microscope study. J Neurocytol 14:245–259

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M (1989) Mossy fiber synapses on glutamate decarboxylase-immunoreactive neurons: evidence for feed-forward inhibition in the CA3 region of the hippocampus. Exp Brain Res 75:441–445

    PubMed  CAS  Google Scholar 

  • Frotscher M, Deller T (2005) Role of the spine apparatus in synaptic plasticity. In: Stanton PK, Bramham C, Scharfman HE (eds) Synaptic plasticity and transsynaptic signaling, Springer, Berlin pp 519–528

    Chapter  Google Scholar 

  • Frotscher M, Gähwiler BH (1988) Synaptic organization of intracellularly stained CA3 pyramidal neurons in slice cultures of rat hippocampus. Neuroscience 24:541–551

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Misgeld U, Nitsch C (1981) Ultrastructure of mossy fiber endings in in vitro hippocampal slices. Exp Brain Res 41:247–255

    PubMed  CAS  Google Scholar 

  • Frotscher M, Soriano E, Misgeld U (1994) Divergence of hippocampal mossy fibers. Synapse 16:148–160

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Zafirov S, Heimrich B (1995) Development of identified neuronal types and of specific synaptic connections in slice cultures of rat hippocampus. Prog Neurobiol 45:143–164

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Jonas P, Sloviter RS (2006) Synapses formed by normal and abnormal hippocampal mossy fibers. Cell Tissue Res 326:361–367

    Article  PubMed  Google Scholar 

  • Gähwiler MH, Capogna M, Debanne D, McKinney RA, Thompson SM (1997) Organotypic slice cultures: a technique has come of age. TINS 20:471–477

    PubMed  Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study. J Anat 83:420–433

    Google Scholar 

  • Hallermann S, Pawlu C, Jonas P, Heckmann M (2003) A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc Natl Acad Sci USA 100:8975–8980

    Article  PubMed  CAS  Google Scholar 

  • Hamlyn LH (1962) The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat 97:112–120

    Google Scholar 

  • Matus A (2000) Actin-based plasticity in dendritic spines. Science 290:754–758

    Article  PubMed  CAS  Google Scholar 

  • Matus A, Frotscher M (2005) Synapse. In: Nadel L (ed) Encyclopedia of cognitive science, vol 4. Wiley, Chichester, pp 301–307

    Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, Oxford

    Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69

    Article  PubMed  CAS  Google Scholar 

  • Rostaing P, Real E, Siksou L, Lechaire J-P, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, Marty S (2006) Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 24:3463–3473

    Article  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395

    Article  PubMed  CAS  Google Scholar 

  • Spacek J (1985) Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components. Anat Embryol 171:235–243

    Article  PubMed  CAS  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    PubMed  CAS  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2:284–291

    PubMed  CAS  Google Scholar 

  • Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–269

    PubMed  CAS  Google Scholar 

  • Studer D, Michel M, Wohlwend M, Hunziker EB, Buschmann MD (1995) Vitrification of articular cartilage by high-pressure freezing. J Microsc 179:321–332

    PubMed  CAS  Google Scholar 

  • Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285–294

    Article  PubMed  CAS  Google Scholar 

  • Toni N, Buchs P-A, Nikonenko I, Bron CR, Muller D (1999) LTP induces synaptogenesis by duplication of synaptic spines contacting a single axon terminal. Nature 402:421–425

    Article  PubMed  CAS  Google Scholar 

  • Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Deutsche Forschungsgemeinschaft (SFB 505, project A3) to MF and AD and the Swiss National Foundation (Grant No.: 105822) to DS. We thank Sigrun Nestel and Cornelia Hofmann for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frotscher.

Additional information

Robert Feulgen Lecture presented at the 49th Symposium of the Society for Histochemistry in Freiburg i.Br., Germany, 26-29 September 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frotscher, M., Zhao, S., Graber, W. et al. New ways of looking at synapses. Histochem Cell Biol 128, 91–96 (2007). https://doi.org/10.1007/s00418-007-0305-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0305-7

Keywords

Navigation