Skip to main content
Log in

Intraocular multiphoton microscopy with subcellular spatial resolution by infrared femtosecond lasers

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We reported on the in situ nonlinear optical sectioning of the corneal and retinal tissues based on the multiphoton microscopy (MPM) with different excitation wavelengths of infrared femtosecond (fs) lasers. The multiphoton nonlinear processing including two-photon fluorescence (2PF) and second harmonic generation (SHG) was induced under condition of high light intensities on an order of MW-GW/cm2. The laser beams emitted from the solid-state Ti: sapphire systems were focused in a 0.1 femtoliter focus volume of a high numerous aperture diffraction-limited objective (40 × 1.3 N.A., oil). The corneal layers have been visualized using nonlinear optical tomography. In particular, corneal Bowman’s layer was optically determined in situ. The cellular and collagen components of tissues were selectively displayed with submicron spatial resolution and high efficiency without any assistance of staining or slicing. The preliminary study on retinal optical tomography is here also reported. MPM is a promising and convenient non-invasive technique by which the tissue layers can be visualized and the selective displaying of the tissue microstructures be realized. The optical biopsy based on intrinsic emission of MPM yields details that provide three-dimensional displaying of the tissue component and even have the potential to be used in clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brakenhoff GJ, Squier J, Norris T, Bliton AC, Wade WH, Athey B (1996) Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J Microsc 181:253–259

    Article  PubMed  CAS  Google Scholar 

  • Brown E, McKee T, Ditomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800

    Article  PubMed  CAS  Google Scholar 

  • Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, Hyman BT (2001) Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21(3):858–864

    PubMed  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, Yuste R (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 54:151–162

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto JG (2003) Optical coherence tomography for ultra high resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10:2350–2353

    Google Scholar 

  • Freeman IL (1978) Collagen polymorphism in mature rabbit cornea. Invest Ophthalmol Vis Sci 17(2):171–177

    PubMed  CAS  Google Scholar 

  • Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys (Leipzig) 9:273–294

    Google Scholar 

  • Greulich KO, Weber G (1992) The light microscope on its way from an analytical to a preparative tool. J Microsc 167:127–151

    Google Scholar 

  • Gu M, Sheppard CJR (1995) Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy. J Microsc 177:128–137

    Google Scholar 

  • Guo Y, Savage HE, Liu F, Schantz SP, Ho PP, Alfano RR (1999) Subsurface tumor progression investigated by non invasive optical second harmonic tomography. Proc Natl Acad Sci USA 96(19):10854–10856

    Article  PubMed  CAS  Google Scholar 

  • Halbhuber KJ, Krieg W, Koenig K (1998) Laser scanning microscopy in enzyme histochemistry. Visualization of cerium-based and DAB-based primary reaction products of phosphatases, oxidases and peroxidases by reflectance and transmission laser scanning microscopy. Cell Mol Biol 44:807–826

    PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5):2811–2825

    PubMed  CAS  Google Scholar 

  • Koenig K, Simon U, Halbhuber KJ (1996) 3D-resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol Biol 42:1181–1194

    CAS  Google Scholar 

  • Koenig K, Schüler M, Halbhuber KJ (1997) Autofluorescence of cells and tissues as a diagnsotic tool. 34. Symposium of the society for histochemistry Jena, abstract. Histochem Cell Biol 108:277

    Google Scholar 

  • Koenig K (2000a) Laser tweezers and multiphoton microscopes in life sciences. Histochem Cell Biol 114:79–92

    Google Scholar 

  • Koenig K, Riemann I, Fischer P, Halbhuber KJ (2000b) Multiplex fish and three-dimensional DNA imaging with near infrared femtosecond laser pulses. Histochem Cell Biol 114:337–345

    Google Scholar 

  • Koenig K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8(3):432–439

    Article  Google Scholar 

  • Koenig K, Wang B, Riemann I, Kobow J (2005) Cornea surgery with nanojoule femtosecond laser pulses. Proc SPIE 5688:288–293. “2005 Pascal Rol Award”

    Google Scholar 

  • Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91:1908–1912

    Article  PubMed  Google Scholar 

  • Li Q, Timmers AM, Hunter K, Gonzalez-Pola C, Lewin AS, Reitze DH, Hauswirth WW (2001) Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. Invest Ophthalmol Vis Sci 42:2981–2989

    PubMed  CAS  Google Scholar 

  • Masters BR, So PT, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophysical J 72:2405–2412

    Article  CAS  Google Scholar 

  • Maurice DM (1984) The cornea and sclera. In: Davson H (ed) The eye. Academic, New York, pp 1–158

    Google Scholar 

  • Moreaux L, Sandre O, Blanchard-Desce M, Mertz J (2000) Membrane imaging by second-harmonic generation microscopy. Opt Lett 25:320–322

    Article  PubMed  CAS  Google Scholar 

  • Nishida T, Yasumoto K, Otori T, Desaki J (1988) The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy. Invest Ophthalmol Vis Sci 29(12):1887–1890

    PubMed  CAS  Google Scholar 

  • Poole CA, Brookes NH, Clover GM (1993) Keratocyte networks visualised in the living cornea using vital dyes. J Cell Sci 106:685–691

    PubMed  Google Scholar 

  • Roth S, Freund I (1979) Second harmonic-generation in collagen. J Chem Phys 70:1637–1643

    Article  CAS  Google Scholar 

  • Scharenberg K (1955) The cells and nerves of the human cornea. Amer J Ophthal 40:368–379

    PubMed  CAS  Google Scholar 

  • Schenke-Layland K, Riemann I, Opitz F, Koenig K, Halbhuber KJ, Stock UA (2004) Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol 23(2):113–125

    Article  PubMed  CAS  Google Scholar 

  • Yazdanfar S, Rollins AM, Izatt JA (2003) In vivo imaging of human retinal flow dynamics by color doppler optical coherence tomography. Arch Ophthalmol 121(2):235–239

    PubMed  Google Scholar 

  • Tsai PS, Friedman B, Ifarraguerri AI, Thompson BD, Lev-Ram V, Schaffer CB, Xiong Q, Tsien RY, Squier JA, Kleinfeld D (2003) All-optical histology using ultrashort laser pulses. Neuron 39:27–41

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Zipfel WR, Webb WW (2001) Multiphoton microscopy in biological research. Curr Opin Chem Biol 5(5):603–608

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003a) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377

    Article  CAS  Google Scholar 

  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003b) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12):7075–7080

    Article  CAS  Google Scholar 

  • Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17):11014–11019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Dietrich Schweitzer and Dr. Martin Hammer from Eye Hospital, University of Jena for their outstanding support with retina study, Professor Chris P. Lohmann from Eye Hospital Rechts der Isar, Technical University of Munich for his helpful discussion. We thank Shuping Song from University of Jena for careful viewing of this manuscript. The authors also wish to thank Isa Lemke, Helmut Hoerig, Michael Szabó and Sabine Hitschke from Institute of Anatomy II, University of Jena for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Juergen Halbhuber.

Additional information

Dedicated on the occasion of the 66th birthday of Professor Dr. Karl-Juergen Halbhuber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, BG., Koenig, K., Riemann, I. et al. Intraocular multiphoton microscopy with subcellular spatial resolution by infrared femtosecond lasers. Histochem Cell Biol 126, 507–515 (2006). https://doi.org/10.1007/s00418-006-0187-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0187-0

Keywords

Navigation