Skip to main content
Log in

Truncated HP1 lacking a functional chromodomain induces heterochromatinization upon in vivo targeting

  • Short Communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1α and HP1β to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1α or HP1β we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1α and HP1β to the chromosome region. We show that CD-less HP1α can induce chromatin condensation, whereas the effect of truncated HP1β is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1α and HP1β without a functional CD are able to induce heterochromatinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  • Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23: 3168–3173

    Article  PubMed  CAS  Google Scholar 

  • Badugu R, Yoo Y, Singh PB, Kellum R. (2005) Mutations in the heterochromatin protein 1 (HP1) hinge domain affect HP1 protein interactions and chromosomal distribution. Chromosoma 113: 370–384

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299: 721–725

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fant L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111: 22–36

    Article  PubMed  CAS  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96: 631–637

    Article  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology: Chromatin higher order folding: Wrapping up transcription. Science 297: 1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Horsley D, Hutchnigs A, Butcher GW, Singh PB (1996) M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet Cell Genet 73: 308–311

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295: 2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis CD, Khorasanizadeh S (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. Embo J 20: 5232–5241

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14: 286–298

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Lechner MS, Schultz DC, Negorev D, Maul GG, Rauscher FJ3rd (2005) The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 331: 929–937

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Danzer JR, Alvarez P, Belmont AS, Wallrath LL (2003) Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130: 1817–1824

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Nat Acad Sci USA 99: 16462–16469

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5: 296–304

    Article  PubMed  CAS  Google Scholar 

  • Meehan RR, Kao CF, Pennings S (2003) HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. Embo J 22: 3164–3174

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory V, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108: 220–234

    Article  PubMed  CAS  Google Scholar 

  • Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1 alpha. Embo Rep 3: 975–981

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AL, OuladAbdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: Interaction between histones and HP1 proteins. Mol Cell 7: 729–739

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Nye AC, Rajendran RR, Stenoien DL, Mancini MA, Katzenellenbogen BS, Belmont AS (2002) Alteration of large-scale chromatin structure by estrogen receptor. Mol Cell Biol 22: 3437–3449

    Article  PubMed  CAS  Google Scholar 

  • Platero JS, Hartnett T, Eissenberg JC (1995) Functional analysis of the chromo domain of HP1. Embo J 14: 3977–3986

    PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12: 1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135: 1685–1700

    Article  PubMed  CAS  Google Scholar 

  • Smothers JF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1- like proteins. Mol Cell Biol 21: 2555–2569

    Article  PubMed  CAS  Google Scholar 

  • Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lystine 9 methylation, transcription repression and heterochromatin protein 1 recruitment. Mol Cell Biol 21: 2525–2538

    Article  CAS  Google Scholar 

  • Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, Hirshberg M, Verreault A, Murzina NV, Laue ED (2004) Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 23: 489–499

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145: 1341–1354

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, Van Der Kraan I, Enserink JM, Mone MJ, Manders EM, Van Driel R (2002) Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem 50: 4552–4564

    Google Scholar 

  • Verschure PJ (2004) Positioning the genome within the nucleus. Biol Cell 25: 96: 569–577

    Google Scholar 

  • Verschure PJ, Van Der Kraan I, De Leeuw W, Van der Vlag J, Carpenter AE, Belmont AS, Van Driel R (2005) In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol 25: 4552–4564

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW, Singh PB (1994) A Mammalian Homologue of Drosophila Heterochromatin Protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenetics Cell Genet 66: 99–103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. P.B. Singh, for kindly providing us with antibodies used in the present study. Confocal microscopy was performed at the Centre for Advanced Microscopy, we gratefully thank Dr. E.M.M. Manders for expert assistance. This work was supported by an ALW-NWO PULS and VIDI grant to PJV (project numbers PULS/33-98l/805-48011 and VIDI2003/03921/ALW/016.041.311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernette J. Verschure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brink, M.C., van der Velden, Y., de Leeuw, W. et al. Truncated HP1 lacking a functional chromodomain induces heterochromatinization upon in vivo targeting. Histochem Cell Biol 125, 53–61 (2006). https://doi.org/10.1007/s00418-005-0088-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0088-7

Keywords

Navigation