Skip to main content
Log in

Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo

Use of a “lectin assay” to survey in vivo glycosylation changes

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

It has been shown that Bacteroides thetaiotaomicron, a representative member of the gut microflora, signals intestinal epithelial cells both in vivo and in vitro and modulate specific glycosylation processes that may mediate intestinal functions. However it is not known whether these modulations depend on the presence of live bacteria or may be elicited by soluble factors produced in vitro by this bacterium. We used lectins and an histochemical approach to survey tissue sections prepared from various cellular compartments of the small and large intestine of NRMI/KI mice grown under gnotobiotic conditions. We compared the results obtained with bacterial culture supernatant and live B. thetaiotaomicron to those obtained from germ-free mice or mice having a conventional microflora. This approach allowed us to conclude that (1) a small but specific number of glycan patterns were restored after treatment with bacterial culture supernatant and (2) the B. thetaiotaomicron associated mice restored a larger number of patterns, however, the complete conventional mice pattern must be a function of the whole microflora in the gut. The possibility to modulate this complex glycosylation pattern by introducing exogenous bacteria and bacterial products should be considered as a promising approach towards understanding the molecular basis of microbial-host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BHI:

Brain heart infusion

BTO:

B. thetaiotaomicron

CV:

Conventional mice

DSA:

Datura stramonium agglutinin

FITC:

Fluorescein isothiocyanate

GalNAc:

N-acetylgalactosamine

GlcNAc:

N-acetylglucosamine

GF:

Germ-free mice

GSI:

Griffonia simplicifolia

HPA:

Helix pomatia agglutinin

MAA:

Mackia amurensis agglutinin

NeuNAc:

N-acetylneuraminic acid

PBS:

Phosphate buffered saline

RCA I:

Ricinus communis agglutinin I

BCS:

Bacterial culture supernatant

SNA:

Sambucus nigra agglutinin

UEA I:

Ulex europaeus agglutinin I

XGF:

Ex-germ-free mice

WGA:

Wheat germ agglutinin

References

  • Banasaz M, Norin E, Midtvedt T (2001) The role of gender, age, and microbial status on cell kinetics in the gastrointestinal tract of mice. Microb Ecol Health Dis 13:135–142

    Article  Google Scholar 

  • Breimer ME, Hansson GC, Karlsson KA, Leffler H (1982) Glycosphingolipids of rat tissues. Different composition of epithelial and nonepithelial cells of small intestine. J Biol Chem 257:557–568

    PubMed  CAS  Google Scholar 

  • Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Dai D, Nanthkuma NN, Newburg DS, Walker WA (2000) Role of oligosaccharides and glycoconjugates in intestinal host defense. J Pediatr Gastroenterol Nutr 30(suppl2):S23–S33

    Article  PubMed  CAS  Google Scholar 

  • Falk P, Roth KA, Gordon JI (1994) Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am J Physiol 266:G987–G1003

    PubMed  CAS  Google Scholar 

  • Falk G, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microb Mol Biol Rev 62:1157–1170

    CAS  Google Scholar 

  • Freitas M, Cayuela C (2000) Microbial modulation of host intestinal glycosylation patterns. Microb Ecol Health Dis Suppl 2:165–178

    Article  Google Scholar 

  • Freitas M, Cayuela C, Antoine JM, Piller F, Sapin C, Trugnan G (2001) A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Cell Microbiol 3(5):289–300

    Article  PubMed  CAS  Google Scholar 

  • Freitas M, Axelsson LG, Cayuela C, Midtvedt T, Trugnan G (2002) Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol 118:149–161

    PubMed  CAS  Google Scholar 

  • Freitas M, Tavan E, Cayuela C, Diop L, Sapin C, Trugnan G (2003) Host-pathogens cross-talk. Indigenous bacteria and probiotics also play the game. Biol Cell 95(8):503–506

    Article  PubMed  Google Scholar 

  • Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20:336–343

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  PubMed  CAS  Google Scholar 

  • Kandori H, Hirayama K, Takeda M, Doi K (1996) Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp Anim 45:155–160

    Article  PubMed  CAS  Google Scholar 

  • Karlsson KA (1998) Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol Microbiol 29:1–11

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC (2000) Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol 148:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Midtvedt T, Carlstedt-Duke B, Hoverstad T, Midtvedt AC, Norin KE, Saxerholt H (1987) Establishment of a biochemically active intestinal ecosystem in ex-germfree rats. Appl Environ Microbiol 53:2866–2871

    PubMed  CAS  Google Scholar 

  • Mouricout M (1997) Interactions between the enteric pathogen and the host. An assortment of bacterial lectins and a set of glycoconjugate receptors. Adv Exp Med Biol 412:109–123

    PubMed  CAS  Google Scholar 

  • Mukai T, Kaneko S, Ohori H (1998) Haemagglutination and glycolipid-binding activities of Lactobacillus reuteri. Lett Appl Microbiol 27:130–134

    Article  PubMed  CAS  Google Scholar 

  • Phillips TE, Frisch EB (1990) Secretory glycoconjugates of a mucin-synthesizing human colonic adenocarcinoma cell line. Analysis using double labeling with lectins. Histochemistry 93:311–317

    Article  PubMed  CAS  Google Scholar 

  • Ryder SD, Smith JA, Rhodes EG, Parker N, Rhodes JM (1994) Proliferative responses of HT29 and Caco2 human colorectal cancer cells to a panel of lectins. Gastroenterology 106:85–93

    PubMed  CAS  Google Scholar 

  • Sharma R, Schumacher U (1995) The influence of diets and gut microflora on lectin binding patterns of intestinal mucins in rats. Lab Invest 73:558–564

    PubMed  CAS  Google Scholar 

  • Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39:555–562

    PubMed  CAS  Google Scholar 

  • Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E (1994) Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 107:1259–1269

    PubMed  CAS  Google Scholar 

  • Walker WA (2000) Role of nutrients and bacterial colonization in the development of intestinal host defense. J Pediatr Gastroenterol Nutr 30(suppl2):S2–S7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Fontanges for the help with confocal microscopy analysis. We also thanks M. Banasaz, A-K Persson and E. Oesterlun for excellent assistance. Grant support: This work was supported by grants from Danone, Fondation pour la Recherche Medicale (FRM), and Association pour la Recherche sur le Cancer (ARC). Miguel Freitas has a grant from the Association Nationale de Recherche Technique and the Danone Vitapole, Danone (CIFRE grant). This work was also supported by B.E. Gustafsson Fund, Karolinska Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germain Trugnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, M., Axelsson, LG., Cayuela, C. et al. Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Histochem Cell Biol 124, 423–433 (2005). https://doi.org/10.1007/s00418-005-0004-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0004-1

Keywords

Navigation