Skip to main content
Log in

Carboxypeptidase E in rat antropyloric mucosa: distribution in progenitor and mature endocrine cell types

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Processing of most gut hormones involves cleavage between dibasic amino acids followed by carboxypeptidase-catalyzed removal of the COOH-terminal basic residue, resulting in peptides with a COOH-terminal glycine. Such peptides may subsequently be converted to amidated peptides or can be directly secreted. It is believed that carboxypeptidase E (CPE) is involved in gut hormone processing but its presence in gut endocrine cells has never been studied. We have analyzed the distribution of CPE in the antropyloric mucosa of rat stomach and report that gastrin cells and progenitor gastrin-somatostatin (G/D) cells express CPE while mature somatostatin cells and the majority of serotonin cells fail to express CPE. These data indicate that immature G/D cells are able to process gastrin to glycine-extended forms and that CPE-mediated processing is not a characteristic of mature somatostatin and serotonin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A–G
Fig. 3A–F

Similar content being viewed by others

References

  • Azuma T (1987) Secretion and biosynthesis of COOH-terminal glycine extended progastrin (gastrin-G) in rat gastric antrum. Gastroenterol Jpn 22:149–157

    CAS  PubMed  Google Scholar 

  • Brakch N, Galanopoulou AS, Patel YC, Boileau G, Seidah NG (1995) Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Lett 362:143–146

    Article  CAS  PubMed  Google Scholar 

  • Brand SJ, Stone D (1988) Reciprocal regulation of antral gastrin and somatostatin gene expression by omeprazole-induced achlorhydria. J Clin Invest 82:1059–1062

    CAS  PubMed  Google Scholar 

  • Cain BM, Wang W, Beinfeld MC (1997) Cholecystokinin (CCK) levels are greatly reduced in the brains but not the duodenums of Cpe(fat)/Cpe(fat) mice: a regional difference in the involvement of carboxypeptidase E (Cpe) in pro-CCK processing. Endocrinology 138:4034–4037

    CAS  PubMed  Google Scholar 

  • Cao BH, Mortensen K, Tornehave D, Larsson LI (2000) Apoptosis in rat gastric antrum: regulation by food intake depends upon nitric oxide synthase. J Histochem Cytochem 48:123–131

    CAS  PubMed  Google Scholar 

  • Docherty K, Hutton JC (1983) Carboxypeptidase activity in the insulin secretory granule. FEBS Lett 162:137–141

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Fricker LD, Day R (1999) Carboxypeptidase D is a potential candidate to carry out redundant processing functions of carboxypeptidase E based on comparative distribution studies in the rat central nervous system. Neuroscience 89:1301–1317

    Article  CAS  PubMed  Google Scholar 

  • Eipper BA, Stoffers DA, Mains RE (1992) The biosynthesis of neuropeptides: peptide a-amidation. Annu Rev Neurosci 15:57–85

    CAS  PubMed  Google Scholar 

  • Fricker LD (1998) Carboxypeptidase E/H. In: Barrett AJ, Rawlings ND, Woessner JFJ (eds) Handbook of proteolytic enzymes. Academic, London, pp 1341–1344

  • Fricker LD, Snyder SH (1982) Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc Natl Acad Sci U S A 79:3886–3890

    CAS  PubMed  Google Scholar 

  • Friis-Hansen L, Rehfeld JF (2000) Impaired feedback of gastric functions in carboxypeptidase E-deficient mice. Biochem Biophys Res Commun 267:638–642

    Article  CAS  PubMed  Google Scholar 

  • Gomez P, Hallberg L, Greeley GH Jr (1999) Carboxypeptidase E (CPE) deficiency in mice with the fat mutation have reduced stomach function. Proc Soc Exp Biol Med 220:52–53

    Article  CAS  PubMed  Google Scholar 

  • Gordon JI (1989) Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol 108:1187–1194

    CAS  PubMed  Google Scholar 

  • Guest PC, Ravazzola M, Davidson HW, Orci L, Hutton JC (1991) Molecular heterogeneity and cellular localization of carboxypeptidase H in the islets of Langerhans. Endocrinology 129:734–740

    CAS  PubMed  Google Scholar 

  • Hilsted L, Hansen CP (1988) Corelease of amidated and glycine-extended antral gastrins after a meal. Am J Physiol 255:G665–G669

    CAS  PubMed  Google Scholar 

  • Holst JJ, Ørskov C, Seier-Poulsen S (1992) Somatostatin is an essential paracrine link in acid inhibition of gastrin secretion. Digestion 51:95–102

    CAS  PubMed  Google Scholar 

  • Hook VYH, Loh YP (1984) Carboxypeptidase B-like converting enzyme activity in secretory granules of rat pituitary. Proc Natl Acad Sci U S A 81:2776–2780

    CAS  PubMed  Google Scholar 

  • Karnik PS, Wolfe MM (1990) Somatostatin stimulates gastrin mRNA turnover in dog antral mucosa. J Biol Chem 265:2550–2555

    CAS  PubMed  Google Scholar 

  • Karnik PS, Monahan SJ, Wolfe MM (1989) Inhibition of gastrin gene expression by somatostatin. J Clin Invest 83:367–372

    CAS  PubMed  Google Scholar 

  • Koh TJ, Chen D (2000) Gastrin as a growth factor in the gastrointestinal tract. Regul Peptides 93:37–44

    Article  CAS  Google Scholar 

  • Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C (1997) Tyrosine phosphorylation of insulin receptor substrate-1 and activation of the PI-3-kinase pathway by glycine-extended gastrin precursors. Biochem Biophys Res Commun 236:687–692

    Article  CAS  PubMed  Google Scholar 

  • Lacourse KA, Friis-Hansen L, Rehfeld JF, Samuelson LC (1997) Disturbed progastrin processing in carboxypeptidase E-deficient fat mice. FEBS Lett 416:45–50

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI (2000) Developmental biology of gastrin and somatostatin in the antropyloric mucosa of the stomach. Microsc Res Tech 48:272–281

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI (2004) GI hormones and endocrine pancreas: expressional regulation. Encyclopedia of Endocrine Diseases, vol 2 (in press)

    Google Scholar 

  • Larsson LI, Hougaard DM (1994) Evidence for paracrine somatostatinergic regulation of gastrin gene expression by double-staining cytochemistry and quantitation. J Histochem Cytochem 42:37–40

    CAS  PubMed  Google Scholar 

  • Larsson LI, Mørch-Jørgensen L (1978) Ultrastructural and cytochemical studies on the cytodifferentiation of duodenal endocrine cells. Cell Tissue Res 194:79–102

    CAS  PubMed  Google Scholar 

  • Larsson LI, Rehfeld JF (1979) A peptide resembling COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type. Nature 277:575–578

    CAS  PubMed  Google Scholar 

  • Larsson LI, Goltermann N, Magistris LD, Rehfeld JF, Schwartz TW (1979) Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393–1395

    CAS  PubMed  Google Scholar 

  • Larsson LI, Tingstedt JE, Madsen OD, Serup P, Hougaard DM (1995) The LIM-homeodomain protein Isl-1 segregates with somatostatin but not with gastrin expression during differentiation of somatostatin/gastrin precursor cells. Endocrine 3:519–524

    CAS  Google Scholar 

  • Larsson LI, Madsen OD, Serup P, Jonsson J, Edlund H (1996) Pancreatic-duodenal homeobox 1: role in gastric endocrine patterning. Mech Dev 60:175–184

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI, St-Onge L, Hougaard DM, Sosa-Pineda, B, Gruss P (1998) Pax 4 and 6 regulate gastrointestinal endocrine cell development. Mech Dev 79:153–159

    Article  CAS  PubMed  Google Scholar 

  • Lynch DR, Braas KM, Hutton JC, Snyder SH (1990) Carboxypeptidase E (CPE): immunocytochemical localization in the rat central nervous system and pituitary gland. J Neurosci 10:1592–1599

    CAS  PubMed  Google Scholar 

  • Martinez A, Burrell MA, Kuijk M, Montuenga LM, Treston A, Cuttitta F, Polak JM (1993) Localization of amidating enzymes (PAM) in rat gastrointestinal tract. J Histochem Cytochem 41:1617–1622

    CAS  PubMed  Google Scholar 

  • Morley JS, Tracy HJ, Gregory RA (1965) Structure-function relationships in the active C-terminal tetrapeptide sequence of gastrin. Nature 207:1356–1359

    CAS  PubMed  Google Scholar 

  • Mulder H, Ekelund M, Ekblad E, Sundler F (1997) Islet amyloid polypeptide in the gut and pancreas: localization, ontogeny and gut motility effects. Peptides 18:771–783

    Article  CAS  PubMed  Google Scholar 

  • Mutt V, Jorpes JE (1968) Structure of porcine cholecystokinin-pancreozymin. Eur J Biochem 6:156–162

    CAS  PubMed  Google Scholar 

  • Negre F, Fagot-Revurat P, Bouisson M, Rehfeld JF, Vaysse N, Pradayrol L (1996) Autocrine stimulation of AR42 J rat pancreatic tumor cell growth by glycine-extended gastrin. Int J Cancer 66:653–658

    Article  CAS  PubMed  Google Scholar 

  • Øster A, Jensen J, Edlund H, Larsson LI (1998) Homebox gene product Nkx 6.1 immunoreactivity in nuclei of endocrine cells of rat and mouse stomach. J. Histochem Cytochem 46:717–721

    Google Scholar 

  • Rehfeld JF (1998) The new biology of gastrointestinal hormones. Physiol Rev 78:1087–1108

    CAS  PubMed  Google Scholar 

  • Reznick SE, Salafia CM, Lage JM, Fricker LD (1998) Immunohistochemical localization of carboxypeptidases E and D in the human placenta and umbilical cord. J Histochem Cytochem 46:1359–1367

    PubMed  Google Scholar 

  • Rouillé Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G, Oliva AA, Chan SJ, Steiner DF (1995) Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neurondocrinol 16:322–361

    Article  Google Scholar 

  • Schubert ML, Edwards NF, Makhlouf GM (1988) Regulation of gastric somatostatin secretion in the mouse by luminal acidity: a local feedback mechanism. Gastroenterology 94:317–322

    CAS  PubMed  Google Scholar 

  • Seva C, Dickinson CJ, Yamada T (1994) Growth promoting effects of glycine extended gastrin. Science 265:410–412

    CAS  PubMed  Google Scholar 

  • Sugano K, Park J, Dobbins WO, Yamada T (1987) Glycine-extended progastrin processing intermediates: accumulation and cosecretion with gastrin. Am J Physiol 253:G502–G507

    CAS  PubMed  Google Scholar 

  • Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285:417–418

    CAS  PubMed  Google Scholar 

  • Tingstedt JE, Edlund H, Madsen OD, Larsson LI (1999) Gastric amylin expression: cellular identity and lack of requirement for the homeobox protein PDX-1. A study in normal and PDX-1-deficient animals with a cautionary note on antiserum evaluation. J Histochem Cytochem 47:973–980

    CAS  PubMed  Google Scholar 

  • Udupi V, Gomez P, Song L, Varlamov O, Reed JT, Leiter EH, Fricker LD, Greeley GH Jr (1997) Effect of carboxypeptidase E deficiency on progastrin processing and gastrin messenger ribonucleic acid expression in mice with the fat mutation. Endocrinology 138:1959–1963

    CAS  PubMed  Google Scholar 

  • Wang TC, Dockray GJ (1999) Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice. Am J Physiol 40:G6–G11

    Google Scholar 

  • Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB (2001) The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 50:534–539

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Grant support was from the Danish Agricultural and Veterinary Research Council, the Danish Medical Research Council and the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Inge Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hougaard, D.M., Larsson, LI. Carboxypeptidase E in rat antropyloric mucosa: distribution in progenitor and mature endocrine cell types. Histochem Cell Biol 121, 55–61 (2004). https://doi.org/10.1007/s00418-003-0606-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-003-0606-4

Keywords

Navigation