Skip to main content

Advertisement

Log in

Metformin protects retinal pigment epithelium cells against H2O2-induced oxidative stress and inflammation via the Nrf2 signaling cascade

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Dysfunctions of retinal pigment epithelium (RPE) attributed to oxidative stress and inflammation are implicated with age-related macular degeneration (AMD). A debate on the curative role of metformin in AMD has been raised, though several recent clinical studies support the lower odds by using metformin. This study aimed to determine whether metformin could exert cytoprotection against RPE oxidative damages and the potential mechanisms.

Methods

A cellular AMD model was established by treating ARPE-19 cells with hydrogen peroxide (H2O2) for 24 h. The reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and levels of pro-inflammatory cytokines were monitored under administrations with H2O2 with/without metformin. The expression and DNA-binding activity of transcription factor erythroid-related factor 2 (Nrf2) were determined by western blot, immunofluorescence, and electrophoretic mobility shift assay. Knockout of Nrf2 was conducted by CRISPR/Cas9 gene deletion system.

Results

Metformin pretreatment significantly improved the H2O2-induced low viability of ARPE-19 cells, reduced ROS production, and increased contents of antioxidative molecules. Concurrently, metformin also suppressed levels of pro-inflammatory cytokines caused by H2O2. The metformin-augmented nuclear translocation and DNA-binding activity of Nrf2 were further verified by the increased expression of its downstream targets. Genetic deletion of Nrf2 blocked the cytoprotective role of metformin.

Conclusion

Metformin possesses antioxidative and anti-inflammatory properties in ARPE-19 cells by activating the Nrf2 signaling. It supports the potential use for the control and prevention of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data is included in this article.

References

  1. Mitchell P, Liew G, Gopinath B, Wong TY (2018) Age-related macular degeneration. Lancet 392:1147–1159. https://doi.org/10.1016/S0140-6736(18)31550-2

    Article  PubMed  Google Scholar 

  2. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317. https://doi.org/10.1016/j.mam.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao S, Lan X, Wu J, Yue S, Zhang H, Wu Q, Zhang G, Liu L (2019) Protocol of global incidence and progression of age-related macular degeneration: a systematic review. Medicine 98:e14645. https://doi.org/10.1097/MD.0000000000014645

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, Wang TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116. https://doi.org/10.1016/s2214-109x(13)70145-1

    Article  PubMed  Google Scholar 

  5. Mones J, Singh RP, Bandello F, Souied E, Liu X, Gale R (2020) Undertreatment of neovascular age-related macular degeneration after 10 years of anti-vascular endothelial growth factor therapy in the real world: the need for a change of mindset. Ophthalmologica 243:1–8. https://doi.org/10.1159/000502747

    Article  PubMed  Google Scholar 

  6. Choudhary M, Malek G (2019) A review of pathogenic drivers of age-related macular degeneration, beyond complement, with a focus on potential endpoints for testing therapeutic interventions in preclinical studies. Adv Exp Med Biol 1185:9–13. https://doi.org/10.1007/978-3-030-27378-1_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM (2016) Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biol 7:78–87. https://doi.org/10.1016/j.redox.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  8. Potilinski MC, Tate PS, Lorenc VE, Gallo JE (2021) New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 188:108513. https://doi.org/10.1016/j.neuropharm.2021.108513

    Article  CAS  PubMed  Google Scholar 

  9. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT (2017) The impact of oxidative stress and inflammation on RPE degeneration in nonneovascular AMD. Prog Retin Eye Res 60:201–218. https://doi.org/10.1016/j.preteyeres.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marquioni-Ramella MD, Suburo AM (2015) Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 14:1560–1577. https://doi.org/10.1039/c5pp00188a

    Article  CAS  PubMed  Google Scholar 

  11. Plafker SM, O’Mealey GB, Szweda LI (2012) Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol 298:135–177. https://doi.org/10.1016/B978-0-12-394309-5.00004-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crabb JW, Miyag M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. P Natl Acad Sci USA 99:14682–14687. https://doi.org/10.1073/pnas.222551899

    Article  CAS  Google Scholar 

  13. Crabb JW (2014) The proteomics of drusen. Cold Spring Harb Perspect Med 4:1–14. https://doi.org/10.1101/cshperspect.a017194

    Article  CAS  Google Scholar 

  14. Rozinga MP, Durhuus JA, Nielsen MK, Subhi Y, Kirkwood TB, Westendorp RG, Sørensen TL (2020) Age-related macular degeneration: a two-level model hypothesis. Prog Retin Eye Res 76:100825. https://doi.org/10.1016/j.preteyeres.2019.100825

    Article  Google Scholar 

  15. Wurm R, Resl M, Neuhold S, Prager R, Brath H, Francesconi C, Vila G, Strunk G, Clodi M, Luger A et al (2016) Cardiovascular safety of metformin and sulfonylureas in patients with different cardiac risk profiles. Heart 102:1544–1551. https://doi.org/10.1136/heartjnl-2015-308711

    Article  CAS  PubMed  Google Scholar 

  16. Maruthur NM, Tseng E, Hutfless S, Wilson L, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal J, Bolen S (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes. Ann Intern Med 164:740–748. https://doi.org/10.7326/m15-2650

    Article  PubMed  Google Scholar 

  17. Chen J, Han J, Li Y, Liu X, Zhou T, Sun H, Edwards P, Gao H, Yu F-S, Qiao X (2018) Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS One 13:1–16. https://doi.org/10.1371/journal.pone.0193031

    Article  CAS  Google Scholar 

  18. Xavier DO, Amaral LS, Gomes MA, Rocha MA, Campos PR, Cota BDCV, Tafuri LSA, Paiva AMR, Silva JH, Andrade SP et al (2010) Metformin inhibits inflammatory angiogenesis in a murine sponge model. Biomed Pharmacother 64:220–225. https://doi.org/10.1016/j.biopha.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Tan BK, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, Lehnert H, Raneva HS (2009) Metformin decreases angiogenesis via NF-κB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 83:566–574. https://doi.org/10.1093/cvr/cvp131

    Article  CAS  PubMed  Google Scholar 

  20. Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012) Effect of metformin on the proliferation, migration, and MMP-2 and -9 expression of human umbilical vein endothelial cells. Mol Med Rep 5:1068–1074. https://doi.org/10.3892/mmr.2012.753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown EE, Ball JD, Chen Z, Khurshid GS, Prosperi M, Ash JD (2019) The common antidiabetic drug metformin reduces odds of developing age-related macular degeneration. Invest Ophthalmol Vis Sci 60:1470–1477. https://doi.org/10.1167/iovs.18-26422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Shen Y, Lai Y, Wang C, Lin K, Feng S-C, Liang C-Y, Wei L-C, Chou P (2019) Association between metformin and a lower risk of age-related macular degeneration in patients with type 2 diabetes. J Ophthalmol 2019:1649156. https://doi.org/10.1155/2019/1649156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stewart JM, Lamy R, Wu F, Keenan JD (2020) Relationship between oral metformin use and age-related macular degeneration. Ophthalmol Retina 4:1118–1119. https://doi.org/10.1016/j.oret.2020.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Ma C, Meng CJ et al (2012) Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 53:129–137. https://doi.org/10.1111/j.1600-079X.2012.00978

    Article  CAS  PubMed  Google Scholar 

  25. Cuadrado A, Manda G, Hassan A et al (2018) Transcription factor Nrf2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383. https://doi.org/10.1124/pr.117.014753

    Article  CAS  PubMed  Google Scholar 

  26. He M, Pan H, Chang RC, So KF, Brecha NC, Pu M (2014) Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One 9:e84800. https://doi.org/10.1371/journal.pone.0084800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salgado D, Forrer RS, Spiess BM (2000) Activities of NADPH-dependent reductases and sorbitol dehydrogenase in canine and feline lenses. Am J Vet Res 6:1322–1324. https://doi.org/10.2460/ajvr.2000.61.1322

    Article  Google Scholar 

  28. Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25:1–31. https://doi.org/10.3390/molecules25225474

    Article  CAS  Google Scholar 

  29. Yiu G, Tieu E, Nguyen AT, Wong B, Smit-McBride Z (2016) Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR/Cas9 endonuclease. Invest Ophthalmol Vis Sci 57:5490–5497. https://doi.org/10.1167/iovs.16-20296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blitzer AL, Ham SA, Colby KA, Skondra D (2021) Association of metformin use with age-related macular degeneration: a case-control study. JAMA Ophthalmol 139:302–309. https://doi.org/10.1001/jamaophthalmol.2020.6331

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang J, Chen Y, Zhang H, Yuan W, Zhao T, Wang N, Fan G, Zheng D, Wang Z (2022) Association between metformin use and the risk of age-related macular degeneration in patients with type 2 diabetes: a retrospective study. BMJ Open 12:e054420. https://doi.org/10.1136/bmjopen-2021-054420

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shao Y, Wang M, Zhu Y, Li X, Liu J (2022) Association of metformin treatment with enhanced effect of anti-VEGF agents in diabetic macular edema patients. Acta Diabetol 59:553–559. https://doi.org/10.1007/s00592-021-01833-4

    Article  CAS  PubMed  Google Scholar 

  33. Gokhale KM, Adderley NJ, Subramanian A, Lee WH, Han D, Coker J, Braithwaite T, Denniston A, Keane PA, Nirantharakumar K (2022) Metformin and risk of age-related macular degeneration in individuals with type 2 diabetes a retrospective cohort study. Br J Ophthalmol 2021:319641. https://doi.org/10.1136/bjophthalmol-2021-319641

    Article  Google Scholar 

  34. Vergroesen JE, Thee EF, Ahmadizar F, Duijn CM, Stricker BH, Kavousi M, Klaver CCW, Ramdas WD (2022) Association of diabetes medication with open-angle glaucoma, age-related macular degeneration, and cataract in the rotterdam study. JAMA Ophthalmol 140:674–681. https://doi.org/10.1001/jamaophthalmol.2022.1435

    Article  PubMed  PubMed Central  Google Scholar 

  35. Domalpally A, Whittier SA, Pan Q, Dabelea DM, Darwin CH, Knowler WC, Lee CG, Luchsinger JA, White NH, Chew EY (2023) Association of metformin with the development of age-related macular degeneration. JAMA Ophthalmol 141:140–147. https://doi.org/10.1001/jamaophthalmol.2022.5567

    Article  PubMed  Google Scholar 

  36. Soydas T, Yaprak Sarac E, Cinar S, Dogan S, Solakoglu S, Tuncdemir M, Sultuybek GK (2018) The protective effects of metformin in an in vitro model of aging 3T3 fibroblast under the high glucose conditions. J Physiol Biochem 74:273–281. https://doi.org/10.1007/s13105-018-0613-5

    Article  CAS  PubMed  Google Scholar 

  37. Qu S, Zhang C, Liu D, Wu J, Tian H, Lu L, Xu G-T, Liu F, Zhang J (2020) Metformin protects ARPE-19 cells from glyoxal-induced oxidative stress. Oxid Med Cell Longev 2020:1–12. https://doi.org/10.1155/2020/1740943

    Article  CAS  Google Scholar 

  38. Kim YS, Kim M, Choi MY et al (2017) Metformin protects against retinal cell death in diabetic mice. Biochem Bioph Res Co 492:397–403. https://doi.org/10.1016/j.bbrc.2017.08.087

    Article  CAS  Google Scholar 

  39. Zhao X, Liu L, Jiang Y, Silva M, Zhen X, Zheng W (2020) Protective effect of metformin against hydrogen peroxide-induced oxidative damage in human retinal pigment epithelial (RPE) cells by enhancing autophagy through activation of AMPK pathway. Oxid Med Cell Longev 2020:2524174. https://doi.org/10.1155/2020/2524174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786. https://doi.org/10.1007/s00018-016-2147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lentsch AB, Ward PA (2000) Regulation of inflammatory vascular damage. J Pathol 190:343–348. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3%3c343::AID-PATH522%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407. https://doi.org/10.2741/2853

    Article  CAS  PubMed  Google Scholar 

  43. Nahavandipour A, Krogh Nielsen M, Sorensen TL, Subhi Y (2020) Systemic levels of interleukin-6 in patients with age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol 98:434–444. https://doi.org/10.1111/aos.14402

    Article  CAS  PubMed  Google Scholar 

  44. Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188. https://doi.org/10.1161/01.HYP.0000221429.94591.72

    Article  CAS  PubMed  Google Scholar 

  45. Cameron AR, Morrison VL, Levin D et al (2016) Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 119:652–665. https://doi.org/10.1161/CIRCRESAHA.116.308445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jansen T, Kvandova M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S (2020) The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation. Antioxidants 9:525. https://doi.org/10.3390/antiox9060525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Davies KJA, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314–336. https://doi.org/10.1016/j.freeradbiomed.2015.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sachdeva MM, Cano M, Handa JT (2014) Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res 119:111–114. https://doi.org/10.1016/j.exer.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  49. Petsouki E, Cabrera SNS, Heiss EH (2022) AMPK and NRF2: interactive players in the same team for cellular homeostasis? Free Radic Biol Med 190:75–93. https://doi.org/10.1016/j.freeradbiomed.2022.07.014

    Article  CAS  PubMed  Google Scholar 

  50. Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A (2015) Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30:747–754. https://doi.org/10.1007/s11011-014-9632-2

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, Li X, Jiang A, Li X, Chang W, Chen J, Ye F (2020) Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol 36:101626. https://doi.org/10.1016/j.redox.2020.101626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prasad S, Sajja RK, Kaisar MA, Park JH, Villalba H, Liles T, Liles T, Abbruscato T, Cucullo L (2017) Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol 12:58–69. https://doi.org/10.1016/j.redox.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, Jeong HG (2013) Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 271:229–238. https://doi.org/10.1016/j.taap.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  54. Cui W, Zhang Z, Zhang P, Qu J, Zheng C, Mo X, Zhou W, Xu L, Yao H, Gao J (2018) Nrf2 attenuates inflammatory response in COPD/emphysema: crosstalk with Wnt3a/beta-catenin and AMPK pathways. J Cell Mol Med 22:3514–3525. https://doi.org/10.1111/jcmm.13628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26. https://doi.org/10.1038/nrd1279

    Article  CAS  PubMed  Google Scholar 

  56. Yerra VG, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 1:394–397. https://doi.org/10.1016/j.redox.2013.07.005

    Article  CAS  Google Scholar 

  57. Rushworth SA, MacEwan DJ, O’Connell MA (2008) Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol 181:6730–6737. https://doi.org/10.4049/jimmunol.181.10.6730

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (82171209) and the Guangzhou Science Technology and Innovation Commission (202102010019).

National Natural Science Foundation of China,82171209,Yuehong Zhang,Guangzhou Science,Technology and Innovation Commission,202102010019,Yuehong Zhang.

Author information

Authors and Affiliations

Authors

Contributions

Qiting Feng and Yuehong Zhang designed the research; Qiting Feng, Xiangcai Ruan, and Min Lu performed experiments and collected data; Qiting Feng, Xiangcai Ruan, and Shimiao Bu analyzed data; Qiting Feng, Xiangcai Ruan, Min Lu, Shimiao Bu, and Yuehong Zhang wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuehong Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Ruan, X., Lu, M. et al. Metformin protects retinal pigment epithelium cells against H2O2-induced oxidative stress and inflammation via the Nrf2 signaling cascade. Graefes Arch Clin Exp Ophthalmol 262, 1519–1530 (2024). https://doi.org/10.1007/s00417-023-06321-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06321-9

Keywords

Navigation