Skip to main content

Advertisement

Log in

Cord blood transforming growth factor-β-induced as predictive biomarker of retinopathy of prematurity in preterm infants

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether 14 inflammation-, angiogenesis-, and adhesion-related proteins in cord blood (CB), alone or in combination with conventional perinatal factors, could predict retinopathy of prematurity (ROP) in preterm infants.

Methods

Data from 111 preterm infants (born at ≤ 32.0 weeks) were retrospectively reviewed. The levels of endoglin, E-selectin, HSP70, IGFBP-3/4, LBP, lipocaline-2, M-CSFR, MIP-1α, pentraxin 3, P-selectin, TGFBI, TGF-β1, and TNFR2 were assessed in stored CB samples collected at birth using ELISA kits. The primary endpoints included severe ROP (≥ stage 3) and type 1 ROP requiring treatment.

Results

ROP was diagnosed in 29 infants (26.1%), among whom 14 (12.6%) had severe ROP and seven (6.3%) had type 1 ROP. Multivariate logistic regression showed that decreased CB TGFBI levels were significantly associated with severe ROP and type 1 ROP after adjusting for gestational age at birth. Stepwise regression analysis allowed to design prediction models with good accuracy, which comprised low CB TGFBI levels and low birth weight (BW) as predictors for severe ROP (area under the curve [AUC] = 0.888), and low CB endoglin levels and low BW as predictors for type 1 ROP (AUC = 0.950). None of the other CB proteins evaluated were found to be associated with severe ROP or type 1 ROP.

Conclusions

Low CB TGFBI levels are associated with severe ROP and type 1 ROP, independently of gestational age. Moreover, combined predictive models based on CB TGFBI and endoglin levels, along with BW data, may act as good indicators at birth for the neonatal risk of ROP progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Hong EH, Shin YU, Bae GH, Choi YJ, Ahn SJ, Sobrin L, Hong R, Kim I, Cho H (2021) Nationwide incidence and treatment pattern of retinopathy of prematurity in South Korea using the 2007–2018 national health insurance claims data. Sci Rep 11:1451. https://doi.org/10.1038/s41598-021-80989-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hellstrom A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382:1445–1457. https://doi.org/10.1016/S0140-6736(13)60178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hartnett ME (2015) Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 122:200–210. https://doi.org/10.1016/j.ophtha.2014.07.050

    Article  PubMed  Google Scholar 

  4. Binenbaum G, Ying GS, Quinn GE, Dreiseitl S, Karp K, Roberts RS, Kirpalani H, Premature Infants in Need of Transfusion Study G (2011) A clinical prediction model to stratify retinopathy of prematurity risk using postnatal weight gain. Pediatrics 127:e607-614. https://doi.org/10.1542/peds.2010-2240

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hartnett ME, Penn JS (2012) Mechanisms and management of retinopathy of prematurity. N Engl J Med 367:2515–2526. https://doi.org/10.1056/NEJMra1208129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dammann O, Rivera JC, Chemtob S (2021) The prenatal phase of retinopathy of prematurity. Acta Paediatr 110:2521–2528. https://doi.org/10.1111/apa.15945

    Article  PubMed  Google Scholar 

  7. Woo SJ, Park JY, Hong S, Kim YM, Park YH, Lee YE, Park KH (2020) Inflammatory and Angiogenic Mediators in Amniotic Fluid Are Associated With the Development of Retinopathy of Prematurity in Preterm Infants. Invest Ophthalmol Vis Sci 61:42. https://doi.org/10.1167/iovs.61.5.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park YJ, Woo SJ, Kim YM, Hong S, Lee YE, Park KH (2019) Immune and Inflammatory Proteins in Cord Blood as Predictive Biomarkers of Retinopathy of Prematurity in Preterm Infants. Invest Ophthalmol Vis Sci 60:3813–3820. https://doi.org/10.1167/iovs.19-27258

    Article  CAS  PubMed  Google Scholar 

  9. Lynch AM, Berning AA, Thevarajah TS, Wagner BD, Post MD, McCourt EA, Cathcart JN, Hodges JK, Mandava N, Gibbs RS, Palestine AG (2018) The role of the maternal and fetal inflammatory response in retinopathy of prematurity. Am J Reprod Immunol 80:e12986. https://doi.org/10.1111/aji.12986

    Article  PubMed  Google Scholar 

  10. Lynch AM, Wagner BD, Hodges JK, Thevarajah TS, McCourt EA, Cerda AM, Mandava N, Gibbs RS, Palestine AG (2017) The relationship of the subtypes of preterm birth with retinopathy of prematurity. Am J Obstet Gynecol 217:354e351-354 e358. https://doi.org/10.1016/j.ajog.2017.05.029

    Article  Google Scholar 

  11. Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172:4618–4623. https://doi.org/10.4049/jimmunol.172.7.4618

    Article  CAS  PubMed  Google Scholar 

  12. Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS (2019) Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol 9:1399. https://doi.org/10.3389/fonc.2019.01399

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thapa N, Lee BH, Kim IS (2007) TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol 39:2183–2194. https://doi.org/10.1016/j.biocel.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  14. Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ (1995) Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376:517–519. https://doi.org/10.1038/376517a0

    Article  CAS  PubMed  Google Scholar 

  15. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9:263–268. https://doi.org/10.1016/s1471-4914(03)00071-6

    Article  CAS  PubMed  Google Scholar 

  16. Pieh C, Kruger M, Lagreze WA, Gimpel C, Buschbeck C, Zirrgiebel U, Agostini HT (2010) Plasma sE-selectin in premature infants: a possible surrogate marker of retinopathy of prematurity. Invest Ophthalmol Vis Sci 51:3709–3713. https://doi.org/10.1167/iovs.09-4723

    Article  PubMed  Google Scholar 

  17. Sood BG, Madan A, Saha S, Schendel D, Thorsen P, Skogstrand K, Hougaard D, Shankaran S, Carlo W, network Nnr (2010) Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res 67:394–400. https://doi.org/10.1203/PDR.0b013e3181d01a36

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fierson WM, American Academy of Pediatrics Section on O, American Academy of O, American Association for Pediatric O, Strabismus, American Association of Certified O (2013) Screening examination of premature infants for retinopathy of prematurity. Pediatrics 131:189–195. https://doi.org/10.1542/peds.2012-2996

    Article  PubMed  Google Scholar 

  19. Fierson WM (2018) Screening examination of premature infants for retinopathy of prematurity. Pediatrics 142:e20183061. https://doi.org/10.1542/peds.2018-3061

    Article  PubMed  Google Scholar 

  20. Early Treatment for Retinopathy of Prematurity Cooperative G, Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Tung B, Redford M (2010) Final visual acuity results in the early treatment for retinopathy of prematurity study. Arch Ophthalmol 128:663–671. https://doi.org/10.1001/archophthalmol.2010.72

    Article  Google Scholar 

  21. Cooperative ETFROP, G, (2003) Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 121:1684–1694. https://doi.org/10.1001/archopht.121.12.1684

    Article  Google Scholar 

  22. Song JS, Woo SJ, Park KH, Kim H, Lee KN, Kim YM (2022) Association of inflammatory and angiogenic biomarkers in maternal plasma with retinopathy of prematurity in preterm infants. Eye (Lond). https://doi.org/10.1038/s41433-022-02234-9

    Article  PubMed  Google Scholar 

  23. Woo SJ, Park KH, Lee SY, Ahn SJ, Ahn J, Park KH, Oh KJ, Ryu A (2013) The relationship between cord blood cytokine levels and perinatal factors and retinopathy of prematurity: a gestational age-matched case-control study. Invest Ophthalmol Vis Sci 54:3434–3439. https://doi.org/10.1167/iovs.13-11837

    Article  PubMed  Google Scholar 

  24. Jung EY, Choi BY, Rhee J, Park J, Cho SH, Park KH (2017) Relation between amniotic fluid infection or cytokine levels and hearing screen failure in infants at 32 wk gestation or less. Pediatr Res 81:349–355. https://doi.org/10.1038/pr.2016.219

    Article  CAS  PubMed  Google Scholar 

  25. Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM (2015) Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 213:S29-52. https://doi.org/10.1016/j.ajog.2015.08.040

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park KH, Kim SN, Oh KJ, Lee SY, Jeong EH, Ryu A (2012) Noninvasive prediction of intra-amniotic infection and/or inflammation in preterm premature rupture of membranes. Reprod Sci 19:658–665. https://doi.org/10.1177/1933719111432869

    Article  CAS  PubMed  Google Scholar 

  27. Lee JY, Park KH, Kim A, Yang HR, Jung EY, Cho SH (2017) Maternal and Placental Risk Factors for Developing Necrotizing Enterocolitis in Very Preterm Infants. Pediatr Neonatol 58:57–62. https://doi.org/10.1016/j.pedneo.2016.01.005

    Article  PubMed  Google Scholar 

  28. Lee JJ (2007) Birth weight for gestational age patterns by sex, plurality, and parity in Korean population. Korean J Pediatr 50:732–739

    Article  Google Scholar 

  29. Doubilet PM, Benson CB, Nadel AS, Ringer SA (1997) Improved birth weight table for neonates developed from gestations dated by early ultrasonography. J Ultrasound Med 16:241–249. https://doi.org/10.7863/jum.1997.16.4.241

    Article  CAS  PubMed  Google Scholar 

  30. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M, Initiative S (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 4:e297. https://doi.org/10.1371/journal.pmed.0040297

    Article  PubMed  PubMed Central  Google Scholar 

  31. Puhr R, Heinze G, Nold M, Lusa L, Geroldinger A (2017) Firth’s logistic regression with rare events: accurate effect estimates and predictions? Stat Med 36:2302–2317. https://doi.org/10.1002/sim.7273

    Article  PubMed  Google Scholar 

  32. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845. https://doi.org/10.2307/2531595

    Article  CAS  PubMed  Google Scholar 

  33. Madan A, El-Ferzli G, Carlson SM, Whitin JC, Schilling J, Najmi A, Yu TT, Lau K, Dimmitt RA, Cohen HJ (2007) A potential biomarker in the cord blood of preterm infants who develop retinopathy of prematurity. Pediatr Res 61:215–221. https://doi.org/10.1203/pdr.0b013e31802d776d

    Article  PubMed  Google Scholar 

  34. Cakir U, Tayman C, Yucel C, Ozdemir O (2019) Can IL-33 and Endocan be New Markers for Retinopathy of Prematurity? Comb Chem High Throughput Screen 22:41–48. https://doi.org/10.2174/1386207322666190325120244

    Article  CAS  PubMed  Google Scholar 

  35. Bae JS, Lee W, Nam JO, Kim JE, Kim SW, Kim IS (2014) Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. Am J Respir Crit Care Med 189:779–786. https://doi.org/10.1164/rccm.201311-2033OC

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Zhao H, Feng Y, Ye Q, Hu J, Guo Y, Feng Y (2021) Pan-Cancer Analysis of the Associations of TGFBI Expression With Prognosis and Immune Characteristics. Front Mol Biosci 8:745649. https://doi.org/10.3389/fmolb.2021.745649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stark A, Dammann C, Nielsen HC, Volpe MV (2018) A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front Pediatr 6:125. https://doi.org/10.3389/fped.2018.00125

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ (2016) Initial Suppression of Transforming Growth Factor-beta Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia. Am J Pathol 186:777–793. https://doi.org/10.1016/j.ajpath.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu M, Iosef C, Rao S, Domingo-Gonzalez R, Fu S, Snider P, Conway SJ, Umbach GS, Heilshorn SC, Dewi RE, Dahl MJ, Null DM, Albertine KH, Alvira CM (2021) Transforming Growth Factor-induced Protein Promotes NF-κB-mediated Angiogenesis during Postnatal Lung Development. Am J Respir Cell Mol Biol 64:318–330. https://doi.org/10.1165/rcmb.2020-0153OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jang JH, Kim YC (2020) Retinal vascular development in an immature retina at 33–34 weeks postmenstrual age predicts retinopathy of prematurity. Sci Rep 10:18111. https://doi.org/10.1038/s41598-020-75151-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lofqvist C, Hansen-Pupp I, Andersson E, Holm K, Smith LE, Ley D, Hellstrom A (2009) Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I. Arch Ophthalmol 127:622–627. https://doi.org/10.1001/archophthalmol.2009.69

    Article  PubMed  Google Scholar 

  42. Lofqvist C, Andersson E, Sigurdsson J, Engstrom E, Hard AL, Niklasson A, Smith LE, Hellstrom A (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124:1711–1718. https://doi.org/10.1001/archopht.124.12.1711

    Article  PubMed  Google Scholar 

  43. Holm M, Morken TS, Fichorova RN, VanderVeen DK, Allred EN, Dammann O, Leviton A, Neonatology ES, Ophthalmology C (2017) Systemic Inflammation-Associated Proteins and Retinopathy of Prematurity in Infants Born Before the 28th Week of Gestation. Invest Ophthalmol Vis Sci 58:6419–6428. https://doi.org/10.1167/iovs.17-21931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu H, Yuan L, Zou Y, Peng L, Wang Y, Li T, Tang S (2014) Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS 122:818–823. https://doi.org/10.1111/apm.12223

    Article  CAS  PubMed  Google Scholar 

  45. Hellgren G, Lofqvist C, Hansen-Pupp I, Gram M, Smith LE, Ley D, Hellstrom A (2018) Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm IGF Res 39:19–24. https://doi.org/10.1016/j.ghir.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  46. Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Gizycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P (2018) An iTRAQ-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 59:5312–5319. https://doi.org/10.1167/iovs.18-24914

    Article  CAS  PubMed  Google Scholar 

  47. Smith LE, Hard AL, Hellstrom A (2013) The biology of retinopathy of prematurity: how knowledge of pathogenesis guides treatment. Clin Perinatol 40:201–214. https://doi.org/10.1016/j.clp.2013.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goldstein GP, Leonard SA, Kan P, Koo EB, Lee HC, Carmichael SL (2019) Prenatal and postnatal inflammation-related risk factors for retinopathy of prematurity. J Perinatol 39:964–973. https://doi.org/10.1038/s41372-019-0357-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siatkowski RM, Dobson V, Quinn GE, Summers CG, Palmer EA, Tung B (2007) Severe visual impairment in children with mild or moderate retinal residua following regressed threshold retinopathy of prematurity. J AAPOS 11:148–152. https://doi.org/10.1016/j.jaapos.2006.11.113

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Division of Statistics in Medical Research Collaborating Center (MRCC) at Seoul National University Bundang Hospital for statistical analysis.

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2020R1F1A1048362). The funders had no role in the design of this study, data collection, data analyses, data interpretation, or in the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyo Hoon Park.

Ethics declarations

Ethics approval

The study adhered to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of the Ethics Committee of the Seoul National University Bundang Hospital, Seongnamsi, Korea (approval no. B-1006/103–102).

Consent to participate

Written informed consent was obtained from the parents of all infants for use of their biological samples and clinical data for research purposes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.S., Woo, S.J., Park, K.H. et al. Cord blood transforming growth factor-β-induced as predictive biomarker of retinopathy of prematurity in preterm infants. Graefes Arch Clin Exp Ophthalmol 261, 2477–2488 (2023). https://doi.org/10.1007/s00417-023-06056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06056-7

Keywords

Navigation