Skip to main content
Log in

Early response to intravenous methylprednisolone therapy for restrictive myopathy in patients with thyroid eye disease

  • Oculoplastics and Orbit
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To report the therapeutic efficacy of intravenous methylprednisolone (IVMP) in patients with restrictive myopathy caused by thyroid eye disease (TED).

Methods

The present prospective uncontrolled study comprised 28 patients with TED and restrictive myopathy who presented with diplopia that had developed within 6 months before their visit. All patients were treated with IVMP for 12 weeks. Deviation angle, limitation of extraocular muscle (EOM) movement, binocular single vision score, Hess score, clinical activity score (CAS), modified NOSPECS score, exophthalmometric value, and the size of EOMs on computed tomography were evaluated. The patients were divided into two groups: those whose deviation angle had decreased or remained unchanged 6 months after treatment (group 1; n = 17) and those whose deviation angle had increased in that time (group 2; n = 11).

Results

The mean CAS of the whole cohort significantly decreased from baseline to 1 month and 3 months after treatment (P = 0.03 and P = 0.02, respectively). The mean deviation angle significantly increased from baseline to 1, 3, and 6 months (P = 0.01, P < 0.01, and P < 0.01, respectively). The deviation angle decreased in 10 (36%), remained constant in seven (25%), and increased in 11 (39%) of the 28 patients. When groups 1 and 2 were compared, no single variable was identified as a cause of deviation angle deterioration (P > 0.05).

Conclusions

When treating patients with TED who have restrictive myopathy, physicians should be aware that some patients show worsening of the strabismus angle despite inflammation control with IVMP therapy. Uncontrolled fibrosis can result in motility deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozaki A, Inoue R, Komoto N, Maeda T, Inoue Y, Inoue T, Ayaki M (2010) Proptosis in dysthyroid ophthalmopathy: a case series of 10,931 Japanese cases. Optom Vis Sci: Off Publ Am Acad Optom 87:200–204. https://doi.org/10.1097/OPX.0b013e3181ce5702

    Article  Google Scholar 

  2. Hiromatsu Y, Eguchi H, Tani J, Kasaoka M, Teshima Y (2014) Graves’ ophthalmopathy: epidemiology and natural history. Intern Med 53:353–360. https://doi.org/10.2169/internalmedicine.53.1518

    Article  PubMed  Google Scholar 

  3. Bartley GB, Fatourechi V, Kadrmas EF, Jacobsen SJ, Ilstrup DM, Garrity JA, Gorman CA (1996) The treatment of graves’ ophthalmopathy in an incidence cohort. Am J Ophthalmol 121:200–206. https://doi.org/10.1016/s0002-9394(14)70585-9

    Article  CAS  PubMed  Google Scholar 

  4. Ponto KA, Merkesdal S, Hommel G, Pitz S, Pfeiffer N, Kahaly GJ (2013) Public health relevance of Graves’ orbitopathy. J Clin Endocrinol Metab 98:145–152. https://doi.org/10.1210/jc.2012-3119

    Article  CAS  PubMed  Google Scholar 

  5. Schotthoefer EO, Wallace DK (2007) Strabismus associated with thyroid eye disease. Curr Opin Ophthalmol 18:361–365. https://doi.org/10.1097/ICU.0b013e32827038f2

    Article  PubMed  Google Scholar 

  6. Bahn RS (2010) Graves’ ophthalmopathy. N Engl J Med 362:726–738. https://doi.org/10.1056/NEJMra0905750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dolman PJ, Cahill K, Czyz CN, Douglas RS, Elner VM, Feldon S, Kazim M, Lucarelli M, Sivak-Collcott J, Stacey AW, Strianese D, Uddin J (2012) Reliability of estimating ductions in thyroid eye disease: an International Thyroid Eye Disease Society multicenter study. Ophthalmology 119:382–389. https://doi.org/10.1016/j.ophtha.2011.07.011

    Article  PubMed  Google Scholar 

  8. Brent GA (2008) Clinical practice. Graves’ disease. N Engl J Med 358:2594–2605. https://doi.org/10.1056/NEJMcp0801880

    Article  CAS  PubMed  Google Scholar 

  9. Bartalena L, Tanda ML (2009) Clinical practice. Graves’ ophthalmopathy. N Engl J Med 360:994–1001. https://doi.org/10.1056/NEJMcp0806317

    Article  CAS  PubMed  Google Scholar 

  10. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM, European Group on Graves O (2016) The 2016 European Thyroid Association/European Group on Graves’ orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid J 5:9–26. https://doi.org/10.1159/000443828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahaly GJ, Pitz S, Hommel G, Dittmar M (2005) Randomized, single blind trial of intravenous versus oral steroid monotherapy in Graves’ orbitopathy. J Clin Endocrinol Metab 90:5234–5240. https://doi.org/10.1210/jc.2005-0148

    Article  CAS  PubMed  Google Scholar 

  12. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol 47:9–14. https://doi.org/10.1046/j.1365-2265.1997.2331047.x

    Article  CAS  Google Scholar 

  13. Eckstein AK, Plicht M, Lax H, Neuhauser M, Mann K, Lederbogen S, Heckmann C, Esser J, Morgenthaler NG (2006) Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 91:3464–3470. https://doi.org/10.1210/jc.2005-2813

    Article  CAS  PubMed  Google Scholar 

  14. Dagi LR, Zoumalan CI, Konrad H, Trokel SL, Kazim M (2011) Correlation between extraocular muscle size and motility restriction in thyroid eye disease. Ophthalmic Plast Reconstr Surg 27:102–110. https://doi.org/10.1097/IOP.0b013e3181e9a063

    Article  PubMed  Google Scholar 

  15. Sullivan TJ, Kraft SP, Burack C, O’Reilly C (1992) A functional scoring method for the field of binocular single vision. Ophthalmology 99:575–581. https://doi.org/10.1016/s0161-6420(92)31931-1

    Article  CAS  PubMed  Google Scholar 

  16. Aylward GW, McCarry B, Kousoulides L, Lee JP, Fells P (1992) A scoring method for Hess charts. Eye (Lond) 6(Pt 6):659–661. https://doi.org/10.1038/eye.1992.141

    Article  PubMed  Google Scholar 

  17. Ozgen A, Ariyurek M (1998) Normative measurements of orbital structures using CT. AJR Am J Roentgenol 170:1093–1096. https://doi.org/10.2214/ajr.170.4.9530066

    Article  CAS  PubMed  Google Scholar 

  18. Macchia PE, Bagattini M, Lupoli G, Vitale M, Vitale G, Fenzi G (2001) High-dose intravenous corticosteroid therapy for Graves’ ophthalmopathy. J Endocrinol Invest 24:152–158. https://doi.org/10.1007/BF03343835

    Article  CAS  PubMed  Google Scholar 

  19. van Geest RJ, Sasim IV, Koppeschaar HP, Kalmann R, Stravers SN, Bijlsma WR, Mourits MP (2008) Methylprednisolone pulse therapy for patients with moderately severe Graves’ orbitopathy: a prospective, randomized, placebo-controlled study. Eur J Endocrinol 158:229–237. https://doi.org/10.1530/EJE-07-0558

    Article  CAS  PubMed  Google Scholar 

  20. Bartalena L, Krassas GE, Wiersinga W, Marcocci C, Salvi M, Daumerie C, Bournaud C, Stahl M, Sassi L, Veronesi G, Azzolini C, Boboridis KG, Mourits MP, Soeters MR, Baldeschi L, Nardi M, Curro N, Boschi A, Bernard M, von Arx G, European Group on Graves O (2012) Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active Graves’ orbitopathy. J Clin Endocrinol Metab 97:4454–4463. https://doi.org/10.1210/jc.2012-2389

    Article  CAS  PubMed  Google Scholar 

  21. Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8:145–150. https://doi.org/10.1007/s11926-006-0055-x

    Article  CAS  PubMed  Google Scholar 

  22. Tsai CC, Wu SB, Kau HC, Wei YH (2018) Essential role of connective tissue growth factor (CTGF) in transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts. Sci Rep 8:7276. https://doi.org/10.1038/s41598-018-25370-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen FQ, Kohyama T, Sköld CM, Zhu YK, Liu X, Romberger DJ, Stoner J, Rennard SI (2002) Glucocorticoids modulate TGF-beta production. Inflammation 26:279–290. https://doi.org/10.1023/a:1021412601538

    Article  CAS  PubMed  Google Scholar 

  24. Yun SM, Kim SH, Kim EH (2019) The molecular mechanism of transforming growth factor-β signaling for intestinal fibrosis: a mini-review. Front Pharmacol 10:162. https://doi.org/10.3389/fphar.2019.00162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kajdaniuk D, Marek B, Niedziolka-Zielonka D, Foltyn W, Nowak M, Sieminska L, Borgiel-Marek H, Glogowska-Szelag J, Ostrowska Z, Drozdz L, Kos-Kudla B (2014) Transforming growth factor beta1 (TGFbeta1) and vascular endothelial growth factor (VEGF) in the blood of healthy people and patients with Graves’ orbitopathy–a new mechanism of glucocorticoids action? Endokrynol Pol 65:348–356. https://doi.org/10.5603/EP.2014.0048

    Article  PubMed  Google Scholar 

  26. Kim JW, Woo YJ, Yoon JS (2016) Is modified clinical activity score an accurate indicator of diplopia progression in Graves’ orbitopathy patients? Endocr J 63:1133–1140. https://doi.org/10.1507/endocrj.EJ16-0165

    Article  PubMed  Google Scholar 

  27. Iñiguez-Ariza NM, Sharma A, Garrity JA, Stan MN (2021) The “Quiet TED”-a special subgroup of thyroid eye disease. Ophthalmic Plast Reconstr Surg. https://doi.org/10.1097/iop.0000000000001942

    Article  PubMed  Google Scholar 

  28. Shams PN, Ma R, Pickles T, Rootman J, Dolman PJ (2014) Reduced risk of compressive optic neuropathy using orbital radiotherapy in patients with active thyroid eye disease. Am J Ophthalmol 157:1299–1305. https://doi.org/10.1016/j.ajo.2014.02.044

    Article  PubMed  Google Scholar 

  29. Prummel MF, Terwee CB, Gerding MN, Baldeschi L, Mourits MP, Blank L, Dekker FW, Wiersinga WM (2004) A randomized controlled trial of orbital radiotherapy versus sham irradiation in patients with mild Graves’ ophthalmopathy. J Clin Endocrinol Metab 89:15–20. https://doi.org/10.1210/jc.2003-030809

    Article  CAS  PubMed  Google Scholar 

  30. Prummel MF, Mourits MP, Blank L, Berghout A, Koornneef L, Wiersinga WM (1993) Randomized double-blind trial of prednisone versus radiotherapy in Graves’ ophthalmopathy. Lancet (London, England) 342:949–954. https://doi.org/10.1016/0140-6736(93)92001-a

    Article  CAS  PubMed  Google Scholar 

  31. Mourits MP, van Kempen-Harteveld ML, García MBG, Koppeschaar HPF, Tick L, Terwee CB (2000) Radiotherapy for Graves’ orbitopathy: randomised placebo-controlled study. Lancet 355:1505–1509. https://doi.org/10.1016/s0140-6736(00)02165-6

    Article  CAS  PubMed  Google Scholar 

  32. Kim JW, Han SH, Son BJ, Rim TH, Keum KC, Yoon JS (2016) Efficacy of combined orbital radiation and systemic steroids in the management of Graves’ orbitopathy. Graefes Arch Clin Exp Ophthalmol 254:991–998. https://doi.org/10.1007/s00417-016-3280-7

    Article  PubMed  Google Scholar 

  33. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ (2003) Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol (Baltimore, Md: 1950) 170:6348–6354. https://doi.org/10.4049/jimmunol.170.12.6348

    Article  CAS  Google Scholar 

  34. Tramontano D, Cushing GW, Moses AC, Ingbar SH (1986) Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology 119:940–942. https://doi.org/10.1210/endo-119-2-940

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH, Leof EB (2020) IPF pathogenesis is dependent upon TGFbeta induction of IGF-1. FASEB J 34:5363–5388. https://doi.org/10.1096/fj.201901719RR

    Article  CAS  PubMed  Google Scholar 

  36. Douglas RS, Kahaly GJ, Patel A, Sile S, Thompson EHZ, Perdok R, Fleming JC, Fowler BT, Marcocci C, Marinò M, Antonelli A, Dailey R, Harris GJ, Eckstein A, Schiffman J, Tang R, Nelson C, Salvi M, Wester S, Sherman JW, Vescio T, Holt RJ, Smith TJ (2020) Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med 382:341–352. https://doi.org/10.1056/NEJMoa1910434

    Article  CAS  PubMed  Google Scholar 

  37. Douglas RS, Dailey R, Subramanian PS, Barbesino G, Ugradar S, Batten R, Qadeer RA, Cameron C (2022) Proptosis and diplopia response with teprotumumab and placebo vs the recommended treatment regimen with intravenous methylprednisolone in moderate to severe thyroid eye disease: a meta-analysis and matching-adjusted indirect comparison. JAMA Ophthalmol 140:328–335. https://doi.org/10.1001/jamaophthalmol.2021.6284

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ye X, Bo X, Hu X, Cui H, Lu B, Shao J, Wang J (2017) Efficacy and safety of mycophenolate mofetil in patients with active moderate-to-severe Graves’ orbitopathy. Clin Endocrinol 86:247–255. https://doi.org/10.1111/cen.13170

    Article  CAS  Google Scholar 

  39. Kahaly GJ, Riedl M, König J, Pitz S, Ponto K, Diana T, Kampmann E, Kolbe E, Eckstein A, Moeller LC, Führer D, Salvi M, Curro N, Campi I, Covelli D, Leo M, Marinò M, Menconi F, Marcocci C, Bartalena L, Perros P, Wiersinga WM (2018) Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol 6:287–298. https://doi.org/10.1016/s2213-8587(18)30020-2

    Article  CAS  PubMed  Google Scholar 

  40. Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, Marinò M, Vaidya B, Wiersinga WM (2021) The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol 185:G43-g67. https://doi.org/10.1530/eje-21-0479

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.I.W and J.H.J conceived and designed the study. J.H.J wrote the manuscript. J.H.J and J.W.P performed the data collection. J.H.J, K.A.P, and K.I.W analyzed the data. K.I.W and Y.D.K critically revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Kyung In Woo.

Ethics declarations

Ethical approval

The authors confirm that the study was approved by the Institutional Review Board of the Samsung Medical Center and certify that the study was performed in accordance with the ethical standards of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J.H., Park, J.W., Park, KA. et al. Early response to intravenous methylprednisolone therapy for restrictive myopathy in patients with thyroid eye disease. Graefes Arch Clin Exp Ophthalmol 261, 2375–2382 (2023). https://doi.org/10.1007/s00417-023-06013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06013-4

Keywords

Navigation