Skip to main content

Advertisement

Log in

Optical quality in low astigmatic eyes with or without cylindrical correction

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether optical quality could be improved by cylindrical correction for low astigmatic eyes with different amounts and axis orientations in patients with myopia up to − 3.00 diopters (D).

Methods

A cross-sectional study enrolling healthy young eyes with 0 to − 3.00 D myopia and − 0.50 to − 0.75 D myopic astigmatism was implemented. With a repeated-measures design, outcome measures were sequentially obtained for each subject under two correction modalities: spherocylindrical correction and spherical correction. Subjective refraction was used to determine the refractive prescriptions accordingly in the two correction modalities to obtain optimal subject-reported visual acuity. Primary outcomes were optical quality parameters including objective scatter index (OSI), modulation transfer function (MTF) cut-off, Strehl ratio (SR), and a simulated contrast visual acuity-optical quality analysis system (OQAS) values (OV) obtained by a double-pass system. Corrected distance visual acuity (CDVA) was measured as a secondary outcome. Outcome comparisons between the two correction modalities were performed by grouping in different amounts (− 0.50 D, − 0.75 D) and axes (with the rule, WTR; against the rule, ATR; oblique, OBL) of astigmatism.

Results

A total of 194 eyes of 194 subjects were evaluated. Significantly better CDVA were shown by spherocylindrical correction for all types of astigmatism except for − 0.50 D WTR astigmatism (P = 0.831). For eyes with − 0.50 D WTR astigmatism, better outcome was only shown in OSI with spherocylindrical correction (P = 0.019). For eyes with − 0.50 D ATR and OBL astigmatism, spherocylindrical correction demonstrated better outcomes in all parameters except for SR (P > 0.05). For eyes with − 0.75 D astigmatism, significantly better outcomes in all optical quality parameters were shown with spherocylindrical correction regardless of the axis (P < 0.05).

Conclusions

Eyes with ATR or OBL myopic astigmatism may benefit in optical quality and visual acuity by combining a cylindrical correction even with a low amount down to − 0.50 D. However, optical quality and visual acuity improvement are limited for WTR astigmatic eyes when the amount of astigmatism is less than − 0.75 D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Read SA, Collins MJ, Carney LG (2007) A review of astigmatism and its possible genesis. Clin Exp Optom 90:5–19. https://doi.org/10.1111/j.1444-0938.2007.00112.x

    Article  PubMed  Google Scholar 

  2. Sanfilippo PG, Yazar S, Kearns L, Sherwin JC, Hewitt AW, Mackey DA (2015) Distribution of astigmatism as a function of age in an Australian population. Acta Ophthalmol 93:e377–e385. https://doi.org/10.1111/aos.12644

    Article  PubMed  Google Scholar 

  3. Chen M, Wu A, Zhang L, Wang W, Chen X, Yu X, Wang K (2018) The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol 18:159. https://doi.org/10.1186/s12886-018-0829-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Richdale K, Berntsen DA, Mack CJ, Merchea MM, Barr JT (2007) Visual acuity with spherical and toric soft contact lenses in low- to moderate-astigmatic eyes. Optom Vis Sci 84:969–975. https://doi.org/10.1097/OPX.0b013e318157c6dc

    Article  PubMed  Google Scholar 

  5. Lehmann RP, Houtman DM (2012) Visual performance in cataract patients with low levels of postoperative astigmatism: full correction versus spherical equivalent correction. Clin Ophthalmol 6:333–338. https://doi.org/10.2147/opth.S28241

    Article  PubMed  PubMed Central  Google Scholar 

  6. Villegas EA, Alcon E, Artal P (2014) Minimum amount of astigmatism that should be corrected. J Cataract Refract Surg 40:13–19. https://doi.org/10.1016/j.jcrs.2013.09.010

    Article  PubMed  Google Scholar 

  7. Casagrande M, Baumeister M, Buhren J, Klaproth OK, Titke C, Kohnen T (2014) Influence of additional astigmatism on distance-corrected near visual acuity and reading performance. Br J Ophthalmol 98:24–29. https://doi.org/10.1136/bjophthalmol-2013-303066

    Article  PubMed  Google Scholar 

  8. Buscacio ES, Patrao LF, de Moraes HV, Jr. (2016) Refractive and quality of vision outcomes with toric IOL implantation in low astigmatism. J Ophthalmol 2016:5424713. https://doi.org/10.1155/2016/5424713

    Article  PubMed  PubMed Central  Google Scholar 

  9. Atchison DA, Mathur A (2011) Visual acuity with astigmatic blur. Optom Vis Sci 88:E798–E805. https://doi.org/10.1097/OPX.0b013e3182186bc4

    Article  PubMed  Google Scholar 

  10. Watanabe K, Negishi K, Dogru M, Yamaguchi T, Torii H, Tsubota K (2013) Effect of pupil size on uncorrected visual acuity in pseudophakic eyes with astigmatism. J Refract Surg 29:25–29

    Article  Google Scholar 

  11. Serra P, Chisholm C, Sanchez Trancon A, Cox M (2016) Distance and near visual performance in pseudophakic eyes with simulated spherical and astigmatic blur. Clin Exp Optom 99:127–134. https://doi.org/10.1111/cxo.12350

    Article  PubMed  Google Scholar 

  12. Remon L, Monsoriu JA, Furlan WD (2017) Influence of different types of astigmatism on visual acuity. J Optom 10:141–148. https://doi.org/10.1016/j.optom.2016.07.003

    Article  PubMed  Google Scholar 

  13. Mimouni M, Nemet A, Pokroy R, Sela T, Munzer G, Kaiserman I (2017) The effect of astigmatism axis on visual acuity. Eur J Ophthalmol 27:308–311. https://doi.org/10.5301/ejo.5000890

    Article  PubMed  Google Scholar 

  14. Kobashi H, Kamiya K, Shimizu K, Kawamorita T, Uozato H (2012) Effect of axis orientation on visual performance in astigmatic eyes. J Cataract Refract Surg 38:1352–1359. https://doi.org/10.1016/j.jcrs.2012.03.032

    Article  PubMed  Google Scholar 

  15. Pujol J, Arjona M, Arasa J, Badia V (1998) Influence of amount and changes in axis of astigmatism on retinal image quality. J Opt Soc Am A Opt Image Sci Vis 15:2514–2521

    Article  CAS  Google Scholar 

  16. Kobashi H, Kamiya K, Yanome K, Igarashi A, Shimizu K (2013) Effect of pupil size on optical quality parameters in astigmatic eyes using a double-pass instrument. Biomed Res Int 2013:124327. https://doi.org/10.1155/2013/124327

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liao X, Lin J, Tian J, Wen B, Tan Q, Lan C (2018) Evaluation of optical quality: ocular scattering and aberrations in eyes implanted with diffractive multifocal or monofocal intraocular lenses. Curr Eye Res 43:696–701. https://doi.org/10.1080/02713683.2018.1449220

    Article  PubMed  Google Scholar 

  18. Diaz-Douton F, Benito A, Pujol J, Arjona M, Guell JL, Artal P (2006) Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci 47:1710–1716. https://doi.org/10.1167/iovs.05-1049

    Article  PubMed  Google Scholar 

  19. Palomino C, Carmona D, Castillo A, Genol I, Clariana A (2010) Visual quality after presbyopia surgery. J Emmetropia 1:74–80

    Google Scholar 

  20. Liao X, Lin J, Tan Q, Wen B, Tian J, Lan C (2019) Evaluation of visual quality in pseudophakic eyes with different ocular spherical aberrations. Curr Eye Res. https://doi.org/10.1080/02713683.2019.1622019

    Article  Google Scholar 

  21. Liao X, Haung X, Lan C, Tan Q, Wen B, Lin J, Tian J (2019) Comprehensive evaluation of retinal image quality in comparing different aspheric to spherical intraocular lens implants. Curr Eye Res. https://doi.org/10.1080/02713683.2019.1615512

    Article  Google Scholar 

  22. de Juan V, Aldaba M, Martin R, Vilaseca M, Herreras JM, Pujol J (2014) Optical quality and intraocular scattering assessed with a double-pass system in eyes with contact lens induced corneal swelling. Cont Lens Anterior Eye 37:278–284. https://doi.org/10.1016/j.clae.2014.02.003

    Article  PubMed  Google Scholar 

  23. Qin Q, Bao L, Yang L, He Z, Huang Z (2019) Comparison of visual quality after EVO-ICL implantation and SMILE to select the appropriate surgical method for high myopia. BMC Ophthalmol 19:21. https://doi.org/10.1186/s12886-019-1029-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fernandez J, Rodriguez-Vallejo M, Martinez J, Tauste A, Garcia-Montesinos J, Pinero DP (2018) Agreement and repeatability of objective systems for assessment of the tear film. Graefes Arch Clin Exp Ophthalmol 256:1535–1541. https://doi.org/10.1007/s00417-018-3986-9

    Article  PubMed  Google Scholar 

  25. Martinez-Roda JA, Vilaseca M, Ondategui JC, Giner A, Burgos FJ, Cardona G, Pujol J (2011) Optical quality and intraocular scattering in a healthy young population. Clin Exp Optom 94:223–229. https://doi.org/10.1111/j.1444-0938.2010.00535.x

    Article  PubMed  Google Scholar 

  26. Xu CC, Xue T, Wang QM, Zhou YN, Huang JH, Yu AY (2015) Repeatability and reproducibility of a double-pass optical quality analysis device. PLoS One 10:e0117587. https://doi.org/10.1371/journal.pone.0117587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan QQ, Lin J, Tian J, Liao X, Lan CJ (2019) Objective optical quality in eyes with customized selection of aspheric intraocular lens implantation. BMC Ophthalmol 19:152. https://doi.org/10.1186/s12886-019-1162-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen T, Yu F, Lin H, Zhao Y, Chang P, Lin L, Chen Q, Zheng Q, Zhao YE, Lu F, Li J (2016) Objective and subjective visual quality after implantation of all optic zone diffractive multifocal intraocular lenses: a prospective, case-control observational study. Br J Ophthalmol 100:1530–1535. https://doi.org/10.1136/bjophthalmol-2015-307135

    Article  PubMed  Google Scholar 

  29. Kamiya K, Shimizu K, Igarashi A, Kobashi H, Ishii R, Sato N (2012) Clinical evaluation of optical quality and intraocular scattering after posterior chamber phakic intraocular lens implantation. Invest Ophthalmol Vis Sci 53:3161–3166. https://doi.org/10.1167/iovs.12-9650

    Article  PubMed  Google Scholar 

  30. Vilaseca M, Padilla A, Pujol J, Ondategui JC, Artal P, Guell JL (2009) Optical quality one month after verisyse and Veriflex phakic IOL implantation and Zeiss MEL 80 LASIK for myopia from 5.00 to 16.50 diopters. J Refract Surg 25:689–698

    Article  Google Scholar 

  31. Xiao XW, Hao J, Zhang H, Tian F (2015) Optical quality of toric intraocular lens implantation in cataract surgery. Int J Ophthalmol 8:66–71. https://doi.org/10.3980/j.issn.2222-3959.2015.01.12

    Article  PubMed  PubMed Central  Google Scholar 

  32. Furmanski CS, Engel SA (2000) An oblique effect in human primary visual cortex. Nat Neurosci 3:535–536. https://doi.org/10.1038/75702

    Article  CAS  PubMed  Google Scholar 

  33. Maedel S, Hirnschall N, Chen YA, Findl O (2014) Rotational performance and corneal astigmatism correction during cataract surgery: aspheric toric intraocular lens versus aspheric nontoric intraocular lens with opposite clear corneal incision. J Cataract Refract Surg 40:1355–1362. https://doi.org/10.1016/j.jcrs.2013.11.039

    Article  PubMed  Google Scholar 

  34. Momeni-Moghaddam H, Naroo SA, Askarizadeh F, Tahmasebi F (2014) Comparison of fitting stability of the different soft toric contact lenses. Cont Lens Anterior Eye 37:346–350. https://doi.org/10.1016/j.clae.2014.05.003

    Article  PubMed  Google Scholar 

  35. Rigi M, Al-Mohtaseb Z, Weikert MP (2016) Astigmatism correction in cataract surgery: toric intraocular lens placement versus peripheral corneal relaxing incisions. Int Ophthalmol Clin 56:39–47. https://doi.org/10.1097/iio.0000000000000128

    Article  PubMed  Google Scholar 

  36. Shao X, Zhou KJ, Pan AP, Cheng XY, Cai HX, Huang JH, Yu AY (2017) Age-related changes in corneal astigmatism. J Refract Surg 33:696–703. https://doi.org/10.3928/1081597x-20170718-04

    Article  PubMed  Google Scholar 

  37. Naeser K, Savini G, Bregnhoj JF (2018) Age-related changes in with-the-rule and oblique corneal astigmatism. Acta Ophthalmol 96:600–606. https://doi.org/10.1111/aos.13683

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Key Research Project of Sichuan Health and Family Planning Commission (No. 18ZD022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Lan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Affiliated Hospital of North Sichuan Medical College and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, QQ., Wen, BW., Liao, X. et al. Optical quality in low astigmatic eyes with or without cylindrical correction. Graefes Arch Clin Exp Ophthalmol 258, 451–458 (2020). https://doi.org/10.1007/s00417-019-04501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04501-0

Keywords

Navigation