Skip to main content

Advertisement

Log in

Outflow enhancement by three different ab interno trabeculectomy procedures in a porcine anterior segment model

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate three different microincisional ab interno trabeculectomy procedures in a porcine eye perfusion model.

Methods

In perfused porcine anterior segments, 90° of trabecular meshwork (TM) was ablated using the Trabectome (T; n = 8), Goniotome (G; n = 8), or Kahook device (K; n = 8). After 24 h, additional 90° of TM was removed. Intraocular pressure (IOP) and outflow facility were measured at 5 and 10 μl/min perfusion to simulate an elevated IOP. Structure and function were assessed with canalograms and histology.

Results

At 5 μl/min infusion rate, T resulted in a greater IOP reduction than G or K from baseline (76.12% decrease versus 48.19% and 47.96%, P = 0.013). IOP reduction between G and K was similar (P = 0.420). Removing another 90° of TM caused an additional IOP reduction only in T and G but not in K. Similarly, T resulted in the largest increase in outflow facility at 5 μl/min compared with G and K (first ablation, 3.41 times increase versus 1.95 and 1.87; second ablation, 4.60 versus 2.50 and 1.74) with similar results at 10 μl/min (first ablation, 3.28 versus 2.29 and 1.90 (P = 0.001); second ablation, 4.10 versus 3.01 and 2.01 (P = 0.001)). Canalograms indicated circumferential flow beyond the ablation endpoints.

Conclusions

T, G, and K significantly increased the outflow facility. In this model, T had a larger effect than G and K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gedde SJ, Herndon LW, Brandt JD et al (2012) Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol 153:804–814.e1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chou J, Turalba A, Hoguet A (2017) Surgical innovations in glaucoma: the transition from trabeculectomy to MIGS. Int Ophthalmol Clin 57:39–55

    Article  PubMed  Google Scholar 

  3. Saheb H, Ahmed IIK (2012) Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 23:96–104

    Article  PubMed  Google Scholar 

  4. Kaplowitz K, Schuman JS, Loewen NA (2014) Techniques and outcomes of minimally invasive trabecular ablation and bypass surgery. Br J Ophthalmol 98:579–585

    Article  PubMed  Google Scholar 

  5. Shingleton BJ, Laul A, Nagao K et al (2008) Effect of phacoemulsification on intraocular pressure in eyes with pseudoexfoliation: single-surgeon series. J Cataract Refract Surg 34:1834–1841

    Article  PubMed  Google Scholar 

  6. Richter GM, Coleman AL (2016) Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol 10:189–206

    PubMed  PubMed Central  Google Scholar 

  7. Ethier CR, Kamm RD, Palaszewski BA et al (1986) Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 27:1741–1750

    PubMed  CAS  Google Scholar 

  8. Seibold LK, Soohoo JR, Ammar DA, Kahook MY (2013) Preclinical investigation of ab interno trabeculectomy using a novel dual-blade device. Am J Ophthalmol 155:524–529.e2

    Article  PubMed  Google Scholar 

  9. Rainer G, Menapace R, Findl O et al (2001) Intraocular pressure rise after small incision cataract surgery: a randomised intraindividual comparison of two dispersive viscoelastic agents. Br J Ophthalmol 85:139–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tranos PG, Wickremasinghe SS, Hildebrand D et al (2003) Same-day versus first-day review of intraocular pressure after uneventful phacoemulsification. J Cataract Refract Surg 29:508–512

    Article  PubMed  Google Scholar 

  11. Wang C, Dang Y, Waxman S et al (2017) Angle stability and outflow in dual blade ab interno trabeculectomy with active versus passive chamber management. PLoS One 12:e0177238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Loewen RT, Brown EN, Scott G et al (2016) Quantification of focal outflow enhancement using differential canalograms. Invest Ophthalmol Vis Sci 57:2831–2838

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dang Y, Waxman S, Wang C et al (2017) Rapid learning curve assessment in an ex vivo training system for microincisional glaucoma surgery. Sci Rep 7:1605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Loewen RT, Brown EN, Roy P et al (2016) Regionally discrete aqueous humor outflow quantification using fluorescein canalograms. PLoS One 11:e0151754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Parikh HA, Loewen RT, Roy P et al (2016) Differential canalograms detect outflow changes from trabecular micro-bypass stents and ab interno trabeculectomy. Sci Rep 6:34705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hays CL, Gulati V, Fan S et al (2014) Improvement in outflow facility by two novel microinvasive glaucoma surgery implants. Invest Ophthalmol Vis Sci 55:1893–1900

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dang Y, Waxman S, Wang C et al (2017) Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model. PeerJ 5:e3629

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gulati V, Fan S, Hays CL et al (2013) A novel 8-mm Schlemm’s canal scaffold reduces outflow resistance in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci 54:1698–1704

    Article  PubMed  Google Scholar 

  19. Camras LJ, Yuan F, Fan S et al (2012) A novel Schlemm’s canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci 53:6115–6121

    Article  PubMed  Google Scholar 

  20. Dang Y, Waxman S, Wang C et al (2018) A porcine ex vivo model of pigmentary glaucoma. Sci Rep 8. https://doi.org/10.1038/s41598-018-23861-x

  21. Kaplowitz K, Bussel II, Honkanen R, et al (2016) Review and meta-analysis of ab-interno trabeculectomy outcomes. Br J Ophthalmol 100:594–600

  22. Bhartiya S, Ichhpujani P, Shaarawy T (2015) Surgery on the trabecular meshwork: histopathological evidence. J Curr Glaucoma Pract 9:51–61

    Article  PubMed  PubMed Central  Google Scholar 

  23. Greenwood MD, Seibold LK, Radcliffe NM et al (2017) Goniotomy with a single-use dual blade: short-term results. J Cataract Refract Surg 43:1197–1201

    Article  PubMed  Google Scholar 

  24. Zhang Z, Dhaliwal AS, Tseng H et al (2014) Outflow tract ablation using a conditionally cytotoxic feline immunodeficiency viral vector. Invest Ophthalmol Vis Sci 55:935–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bahler CK, Smedley GT, Zhou J, Johnson DH (2004) Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments. Am J Ophthalmol 138:988–994

    Article  PubMed  Google Scholar 

  26. McMenamin PG, Steptoe RJ (1991) Normal anatomy of the aqueous humour outflow system in the domestic pig eye. J Anat 178:65–77

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Loewen RT, Roy P, Park DB et al (2016) A porcine anterior segment perfusion and transduction model with direct visualization of the trabecular meshwork. Invest Ophthalmol Vis Sci 57:1338–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Khaja HA, Hodge DO, Sit AJ (2008) Trabectome ablation arc clinical results and relation to intraocular pressure. Invest Ophthalmol Vis Sci 49:4191–4191

    Google Scholar 

  29. Hunter KS, Fjield T, Heitzmann H et al (2014) Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling. Clin Ophthalmol 8:499–506

    PubMed  PubMed Central  Google Scholar 

  30. Rhee DJ, Gupta M, Moncavage MB et al (2009) Idiopathic elevated episcleral venous pressure and open-angle glaucoma. Br J Ophthalmol 93:231–234

    Article  PubMed  CAS  Google Scholar 

  31. Bigger JF (1975) Glaucoma with elevated episcleral venous pressure. South Med J 68:1444–1448

    Article  PubMed  CAS  Google Scholar 

  32. Greenfield DS (2000) Glaucoma associated with elevated episcleral venous pressure. J Glaucoma 9:190–194

    Article  PubMed  CAS  Google Scholar 

  33. Van de Velde S, Van Bergen T, Vandewalle E et al (2015) Rho kinase inhibitor AMA0526 improves surgical outcome in a rabbit model of glaucoma filtration surgery. Prog Brain Res 220:283–297

    Article  PubMed  Google Scholar 

  34. Khaw PT, Chang L, Wong TT et al (2001) Modulation of wound healing after glaucoma surgery. Curr Opin Ophthalmol 12:143–148

    Article  PubMed  CAS  Google Scholar 

  35. Dang Y, Wang C, Shah P et al (2018) Ocular hypotension, actin stress fiber disruption and phagocytosis increase by RKI-1447, a Rho-kinase inhibitor. https://doi.org/10.20944/preprints201802.0026.v1

  36. Dang Y, Loewen R, Parikh HA et al (2016) Gene transfer to the outflow tract. Exp Eye Res 044396

  37. Waxman S, Loewen RT, Dang Y, et al (2017) High-resolution, three dimensional reconstruction of the outflow tract demonstrates segmental differences in cleared eyes. Researchgate preprint. https://doi.org/10.13140/RG.2.2.27838.18243

  38. Dang Y, Waxman S, Wang C, et al (2018) Intraocular pressure elevation precedes a phagocytosis decline in a model of pigmentary glaucoma. F1000Res 7. https://doi.org/10.12688/f1000research.13797.1

  39. Xin C, Chen X, Li M et al (2017) Imaging collector channel entrance with a new intraocular micro-probe swept-source optical coherence tomography. Acta Ophthalmol 95:602–607

    Article  PubMed  CAS  Google Scholar 

  40. Pattabiraman PP, Inoue T, Rao PV (2015) Elevated intraocular pressure induces Rho GTPase mediated contractile signaling in the trabecular meshwork. Exp Eye Res 136:29–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mettu PS, Deng P-F, Misra UK et al (2004) Role of lysophospholipid growth factors in the modulation of aqueous humor outflow facility. Invest Ophthalmol Vis Sci 45:2263–2271

    Article  PubMed  Google Scholar 

  42. Ramos RF, Stamer WD (2008) Effects of cyclic intraocular pressure on conventional outflow facility. Invest Ophthalmol Vis Sci 49:275–281

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lei Y, Stamer WD, Wu J, Sun X (2014) Endothelial nitric oxide synthase—related mechanotransduction changes in aged porcine angular aqueous plexus CellseNOS-related mechanotransduction changes. Invest Ophthalmol Vis Sci 55:8402–8408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Giovingo M, Nolan M, McCarty R et al (2013) sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Mol Vis 19:2151–2164

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Camras LJ, Stamer WD, Epstein D et al (2012) Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Invest Ophthalmol Vis Sci 53:5242–5250

    Article  PubMed  Google Scholar 

  46. Lei Y, Stamer WD, Wu J, Sun X (2013) Oxidative stress impact on barrier function of porcine angular aqueous plexus cell monolayers. Invest Ophthalmol Vis Sci 54:4827–4835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lei Y, Stamer WD, Wu J, Sun X (2014) Cell senescence reduced the mechanotransduction sensitivity of porcine angular aqueous plexus cells to elevation of pressure effect of pressure on AAP cells. Invest Ophthalmol Vis Sci 55:2324–2328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by the Wiegand Fellowship of the Eye and Ear Foundation of Pittsburgh (YD), by the Initiative to Cure Glaucoma of the Eye and Ear Foundation of Pittsburgh (NAL), by an NIH CORE Grant P30 EY08098 to the Department of Ophthalmology, and an unrestricted grant from Research to Prevent Blindness, New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils A. Loewen.

Ethics declarations

Conflict of interest

Author NAL has received speaker honoraria for lectures and wetlabs from Neomedix Corp.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. No animals were sacrificed for the purpose of doing research. An approval by an ethics committee or institutional animal care and use committee was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Wang, C., Shah, P. et al. Outflow enhancement by three different ab interno trabeculectomy procedures in a porcine anterior segment model. Graefes Arch Clin Exp Ophthalmol 256, 1305–1312 (2018). https://doi.org/10.1007/s00417-018-3990-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-3990-0

Keywords

Navigation