Skip to main content

Advertisement

Log in

Osmotic expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Diabetic retinopathy is associated with osmotic stress resulting from hyperglycemia and intracellular sorbitol accumulation. Systemic hypertension is a risk factor of diabetic retinopathy. High intake of dietary salt increases extracellular osmolarity resulting in systemic hypertension. We determined the effects of extracellular hyperosmolarity, chemical hypoxia, and oxidative stress on the gene expression of enzymes involved in sorbitol production and conversion in cultured human retinal pigment epithelial (RPE) cells.

Methods

Alterations in the expression of aldose reductase (AR) and sorbitol dehydrogenase (SDH) genes were examined with real-time RT-PCR. Protein levels were determined with Western blot analysis. Nuclear factor of activated T cell 5 (NFAT5) was knocked down with siRNA.

Results

AR gene expression in RPE cells was increased by high (25 mM) extracellular glucose, CoCl2 (150 μM)-induced chemical hypoxia, H2O2 (20 μM)-induced oxidative stress, and extracellular hyperosmolarity induced by addition of NaCl or sucrose. Extracellular hyperosmolarity (but not hypoxia) also increased AR protein level. SDH gene expression was increased by hypoxia and oxidative stress, but not extracellular hyperosmolarity. Hyperosmolarity and hypoxia did not alter the SDH protein level. The hyperosmotic AR gene expression was dependent on activation of metalloproteinases, autocrine/paracrine TGF-β signaling, activation of p38 MAPK, ERK1/2, and PI3K signal transduction pathways, and the transcriptional activity of NFAT5. Knockdown of NAFT5 or inhibition of AR decreased the cell viability under hyperosmotic (but not hypoxic) conditions and aggravated the hyperosmotic inhibition of cell proliferation.

Conclusions

The data suggest that sorbitol accumulation in RPE cells occurs under hyperosmotic, but not hypoxic and oxidative stress conditions. NFAT5- and AR-mediated sorbitol accumulation may protect RPE cells under conditions of osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cunha-Vaz J, Ribeiro L, Lobo C (2014) Phenotypes and biomarkers of diabetic retinopathy. Prog Retin Eye Res 41:90–111

    Article  CAS  PubMed  Google Scholar 

  2. Kowluru RA (2005) Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal 7:1581–1587

    Article  CAS  PubMed  Google Scholar 

  3. Zheng L, Kern TS (2009) Role of nitric oxide, superoxide, peroxynitrite and PARP in diabetic retinopathy. Front Biosci 14:3974–3987

    Article  CAS  Google Scholar 

  4. Vinores SA, van Niel E, Swerdloff JL, Campochiaro PA (1993) Electron microscopic immunocytochemical demonstration of blood-retinal barrier breakdown in human diabetics and its association with aldose reductase in retinal vascular endothelium and retinal pigment epithelium. Histochem J 25:648–663

    Article  CAS  PubMed  Google Scholar 

  5. Aizu Y, Oyanagi K, Hu J, Nakagawa H (2002) Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology 22:161–170

    Article  PubMed  Google Scholar 

  6. Xu H, Song Z, Fu S, Zhu M, Le Y (2011) RPE barrier breakdown in diabetic retinopathy: seeing is believing. J Ocul Biol Dis Inform 4:83–92

    Article  Google Scholar 

  7. Omri S, Behar-Cohen F, Rothschild PR, Gélizé E, Jonet L, Jeanny JC, Omri B, Crisanti P (2013) PKCζ mediates breakdown of outer blood-retinal barriers in diabetic retinopathy. PLoS One 8, e81600

    Article  PubMed  PubMed Central  Google Scholar 

  8. Énzsöly A, Szabó A, Kántor O, Dávid C, Szalay P, Szabó K, Szél Á, Németh J, Lukáts Á (2014) Pathologic alterations of the outer retina in streptozotocin-induced diabetes. Invest Ophthalmol Vis Sci 55:3686–3699

    Article  PubMed  Google Scholar 

  9. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 105:1801–1815

    Article  CAS  PubMed  Google Scholar 

  10. Kamoi K, Takeda K, Hashimoto K, Tanaka R, Okuyama S (2013) Identifying risk factors for clinically significant diabetic macula edema in patients with type 2 diabetes mellitus. Curr Diabetes Rev 9:209–217

    Article  PubMed  Google Scholar 

  11. UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317:703–713

    Article  PubMed Central  Google Scholar 

  12. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321:412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neuhofer W (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 11:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hammes HP (2003) Pathophysiological mechanisms of diabetic angiopathy. J Diabetes Complicat 17(2 Suppl):16–19

    Article  PubMed  Google Scholar 

  15. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M (2004) Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 53:2404–2411

    Article  CAS  PubMed  Google Scholar 

  16. Chung SS, Chung SK (2005) Aldose reductase in diabetic microvascular complications. Curr Drug Targets 6:475–486

    Article  CAS  PubMed  Google Scholar 

  17. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M (2003) A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52:506–511

    Article  CAS  PubMed  Google Scholar 

  18. Cheung AK, Fung MK, Lo AC, Lam TT, So KF, Chung SS, Chung SK (2005) Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54:3119–3125

    Article  CAS  PubMed  Google Scholar 

  19. He FJ, Markandu ND, Sagnella GA, de Wardener HE, MacGregor GA (2005) Plasma sodium: ignored and underestimated. Hypertension 45:98–102

    Article  CAS  PubMed  Google Scholar 

  20. Obika LO, Amabebe E, Ozoene JO, Inneh CA (2013) Thirst perception, plasma osmolality and estimated plasma arginine vasopressin concentration in dehydrated and oral saline loaded subjects. Niger J Physiol Sci 28:83–89

    CAS  PubMed  Google Scholar 

  21. Kenney WL, Chiu P (2001) Influence of age on thirst and fluid intake. Med Sci Sports Exerc 33:1524–1532

    Article  CAS  PubMed  Google Scholar 

  22. Khaw KT, Barrett-Connor E (1988) The association between blood pressure, age and dietary sodium and potassium: a population study. Circulation 77:53–61

    Article  CAS  PubMed  Google Scholar 

  23. Qin Y, Xu G, Fan J, Witt RE, Da C (2009) High-salt loading exacerbates increased retinal content of aquaporins AQP1 and AQP4 in rats with diabetic retinopathy. Exp Eye Res 89:741–747

    Article  CAS  PubMed  Google Scholar 

  24. Hollborn M, Vogler S, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2015) Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5. Mol Vis 21:360–377

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Veltmann M, Hollborn M, Reichenbach A, Wiedemann P, Kohen L, Bringmann A (2016) Osmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cells. PLoS One 11, e0147312

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klawitter J, Rivard CJ, Brown LM, Capasso JM, Almeida NE, Maunsbach AB, Pihakaski-Maunsbach K, Berl T, Leibfritz D, Christians U, Chan L (2008) A metabonomic and proteomic analysis of changes in IMCD3 cells chronically adapted to hypertonicity. Nephron Physiol 109:1–10

    Article  Google Scholar 

  27. Cheung CY, Ko BC (2013) NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance. J Mol Signal 8:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriyama T, Garcia-Perez A, Burg MB (1989) Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 264:16810–16814

    CAS  PubMed  Google Scholar 

  29. Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM (1999) Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci U S A 96:2538–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park J, Kim H, Park SY, Lim SW, Kim YS, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Jeong BY, Kwon HM, Choi WS (2014) Tonicity-responsive enhancer binding protein regulates the expression of aldose reductase and protein kinase Cδ in a mouse model of diabetic retinopathy. Exp Eye Res 122:13–19

    Article  CAS  PubMed  Google Scholar 

  31. Lin LR, Carper D, Yokoyama T, Reddy VN (1993) The effect of hypertonicity on aldose reductase, alpha B-crystallin, and organic osmolytes in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 34:2352–2359

    CAS  PubMed  Google Scholar 

  32. Sato S, Lin LR, Reddy VN, Kador PF (1993) Aldose reductase in human retinal pigment epithelial cells. Exp Eye Res 57:235–241

    Article  CAS  PubMed  Google Scholar 

  33. Chen R, Hollborn M, Grosche A, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2014) Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in retinal pigment epithelial cells. Mol Vis 20:242–258

    PubMed  PubMed Central  Google Scholar 

  34. Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43:864–869

    PubMed  Google Scholar 

  35. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392:405–408

    Article  CAS  PubMed  Google Scholar 

  36. Arsenijevic T, Vujovic A, Libert F, Op de Beeck A, Hébrant A, Janssens S, Grégoire F, Lefort A, Bolaky N, Perret J, Caspers L, Willermain F, Delporte C (2013) Hyperosmotic stress induces cell cycle arrest in retinal pigmented epithelial cells. Cell Death Dis 4, e662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fraser-Bell S, Kaines A, Hykin PG (2008) Update on treatments for diabetic macular edema. Curr Opin Ophthalmol 19:185–189

    Article  PubMed  Google Scholar 

  38. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    Article  CAS  PubMed  Google Scholar 

  39. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  40. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kB. Proc Natl Acad Sci U S A 93:9090–9095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee K, Lee JH, Boovanahalli SK, Jin Y, Lee M, Jin X, Kim JH, Hong YS, Lee JJ (2007) (Aryloxyacetylamino)benzoic acid analogues: a new class of hypoxia-inducible factor-1 inhibitors. J Med Chem 50:1675–1684

    Article  CAS  PubMed  Google Scholar 

  42. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242

    Article  CAS  PubMed  Google Scholar 

  43. Ruepp B, Bohren KM, Gabbay KH (1996) Characterization of the osmotic response element of the human aldose reductase gene promoter. Proc Natl Acad Sci U S A 93:8624–8629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woo SK, Lee SD, Kwon HM (2002) TonEBP transcriptional activator in the cellular response to increased osmolality. Pflugers Arch 444:579–585

    Article  CAS  PubMed  Google Scholar 

  45. Ho SN (2003) The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Arch Biochem Biophys 413:151–157

    Article  CAS  PubMed  Google Scholar 

  46. Mylari BL, Beyer TA, Siegel TW (1991) A highly specific aldose reductase inhibitor, ethyl 1-benzyl-3-hydroxy-2(5H)-oxopyrrole-4-carboxylate, and its congeners. J Med Chem 34:1011–1018

    Article  CAS  PubMed  Google Scholar 

  47. Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  CAS  PubMed  Google Scholar 

  48. Henry DN, Frank RN, Hootman SR, Rood SE, Heilig CW, Busik JV (2000) Glucose-specific regulation of aldose reductase in human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 41:1554–1560

    CAS  PubMed  Google Scholar 

  49. Virgili G, Parravano M, Menchini F, Evans JR (2014) Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev 10, CD007419

    Google Scholar 

  50. Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K, Kasuya Y, Yasuda Y, Kamiya H, Hotta N (2003) The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 60:1–9

    Article  CAS  PubMed  Google Scholar 

  51. Kubo E, Urakami T, Fatma N, Akagi Y, Singh DP (2004) Polyol pathway-dependent osmotic and oxidative stresses in aldose reductase-mediated apoptosis in human lens epithelial cells: role of AOP2. Biochem Biophys Res Commun 314:1050–1056

    Article  CAS  PubMed  Google Scholar 

  52. Fu J, Tay SS, Ling EA, Dheen ST (2007) Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells. J Neurochem 103:1654–1665

    Article  CAS  PubMed  Google Scholar 

  53. Bringmann A, Uckermann O, Pannicke T, Iandiev I, Reichenbach A, Wiedemann P (2005) Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol Scand 83:528–538

    Article  PubMed  Google Scholar 

  54. Ryan GJ (2007) New pharmacologic approaches to treating diabetic retinopathy. Am J Health Syst Pharm 64:S15–S21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margrit Hollborn.

Ethics declarations

Funding

The Geschwister Freter Stiftung (Hannover, Germany) and the Deutsche Forschungsgemeinschaft provided financial support in the form of grants (KO 1547/7-1). The sponsors had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winges, A., Garcia, T.B., Prager, P. et al. Osmotic expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5. Graefes Arch Clin Exp Ophthalmol 254, 2387–2400 (2016). https://doi.org/10.1007/s00417-016-3492-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3492-x

Keywords

Navigation