Skip to main content

Advertisement

Log in

Spectral-domain optical coherence tomography evaluation of vitreoretinal adhesions in idiopathic epiretinal membranes

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Vitreoretinal adhesions play a key role in the vector forces exerted on the vitreoretinal interface, leading to tractional retina deformation and macular hole formation. The aim of this study was to identify the presence of vitreopapillary and vitreofoveal adhesions in idiopathic epiretinal membranes (ERMs) with spectral-domain optical coherence tomography (SD-OCT) and to evaluate their influence on the vitreoretinal interface.

Methods

Sixty-five eyes (65 patients) with idiopathic ERM and 64 healthy eyes (64 patients) underwent SD-OCT analysis. We studied vitreopapillary and vitreofoveal adhesion prevalence in eyes with idiopathic ERM using different SD-OCT patterns (“adherent” or “tractional”). We analyzed their influence on central foveal thickness (CFT), on retinal nerve fiber layer (RNFL) thickness, and on morphological modifications (foveal depression profile and inner/outer photoreceptor junction).

Results

Vitreopapillary adhesion was present in 51.6 % of normal eyes and in 24.6 % of eyes with idiopathic ERM, while vitreofoveal adhesion was found in 14.1 % of normal eyes and in 15.4 % of eyes with ERM. Vitreopapillary adhesion prevalence was significantly higher in the tractional ERM subgroup (p = 0.01), than in the adherent ERM subgroup. Both adhesions had no influence on CFT, RNFL thickness, or inner segment/outer segment junction status.

Conclusions

Our study suggests that vitreoretinal adhesions may influence the pathogenesis and course of idiopathic ERM. The absence of vitreopapillary adhesion in the adherent type, and its presence in the tractional type, seems to play a key role in ERM characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang LK, Fine HF, Spaide RF, Koizumi H, Grossniklaus HE (2008) Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol 146(1):121–127

    Article  PubMed Central  PubMed  Google Scholar 

  2. Smiddy WE, Kim SS, Lujan BJ, Gregori G (2009) Myopic traction maculopathy: spectral domain optical coherence tomographic imaging and a hypothesized mechanism. Ophthalmic Surg Lasers Imaging 40(2):169–173

    Article  PubMed  Google Scholar 

  3. Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 149(3):371–382

    Article  PubMed  Google Scholar 

  4. Gallemore RP, Jumper JM, McCuen BW 2nd, Jaffe GJ, Postel EA, Toth CA (2000) Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 20(2):115–120

    Article  CAS  PubMed  Google Scholar 

  5. Mirza RG, Johnson MW, Jampol LM (2007) Optical coherence tomography use in evaluation of the vitreoretinal interface: a review. Surv Ophthalmol 52(4):397–421

    Article  PubMed  Google Scholar 

  6. Wang MY, Nguyen D, Hindoyan N, Sadun AA, Sebag J (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29(5):644–650

    Article  PubMed  Google Scholar 

  7. Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM Jr, Yannuzzi LA (2008) Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol 145(3):509–517

    Article  PubMed  Google Scholar 

  8. Lee SJ, Koh HJ (2011) Effects of vitreomacular adhesion on anti-vascular endothelial growth factor treatment for exudative age-related macular degeneration. Ophthalmology 118(1):101–110

    Article  PubMed  Google Scholar 

  9. Chauhan DS, Antcliff RJ, Rai PA, Williamson TH, Marshall J (2000) Papillofoveal traction in macular hole formation: the role of optical coherence tomography. Arch Ophthalmol 118(1):32–38

    Article  CAS  PubMed  Google Scholar 

  10. Odrobina D, Michalewska Z, Michalewski J, Dziegielewski K, Nawrocki J (2011) Long-Term Evaluation of Vitreomacular Traction Disorder in Spectral-Domain Optical Coherence Tomography. Retina 31(2):324–331

    Article  PubMed  Google Scholar 

  11. Sebag J (2008) Vitreoschisis. Graefes Arch Clin Exp Ophthalmol 246(3):329–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129

    PubMed Central  PubMed  Google Scholar 

  13. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242(8):690–698

    Article  CAS  PubMed  Google Scholar 

  14. Mori K, Gehlbach PL, Sano A, Deguchi T, Yoneya S (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24(1):57–62

    Article  PubMed  Google Scholar 

  15. Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103(12):2142–2151

    Article  CAS  PubMed  Google Scholar 

  16. Panozzo G, Mercanti A (2004) Optical coherence tomography findings in myopic traction maculopathy. Arch Ophthalmol 122(10):1455–1460

    Article  PubMed  Google Scholar 

  17. Kim JS, Chhablani J, Chan CK, Cheng L, Kozak I, Hartmann K, Freeman WR (2012) Retinal Adherence and Fibrillary Surface Changes Correlate With Surgical Difficulty of Epiretinal Membrane Removal. Am J Ophthalmol 153(4):692–697

    Article  PubMed Central  PubMed  Google Scholar 

  18. AzzoliniC PF, Codenotti M, Pierro L, Brancato R (1999) Optical coherence tomography in idiopathic epiretinal macular membrane surgery. Eur J Ophthalmol 9(3):206–211

    Google Scholar 

  19. Massin P, Allouch C, Haouchine B, Metge F, Paques M, Tangui L, Erginay A, Gaudric A (2000) Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am J Ophthalmol 130(6):732–739

    Article  CAS  PubMed  Google Scholar 

  20. Falkner-Radler CI, Glittenberg C, Binder S (2009) Spectral domain high-definition optical coherence tomography in patients undergoing epiretinal membrane surgery. Ophthalmic Surg Lasers Imaging 40(3):270–276

    Article  PubMed  Google Scholar 

  21. Yamashita T, Uemura A, Sakamoto T (2008) Intraoperative characteristics of the posterior vitreous cortex in patients with epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 246(3):333–337

    Article  PubMed  Google Scholar 

  22. Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86(8):902–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kishi S, Shimizu K (1994) Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol 118(4):451–456

    CAS  PubMed  Google Scholar 

  24. Sakamoto T, Ishibashi T (2011) Hyalocytes: Essential Cells of the Vitreous Cavity in Vitreoretinal Pathophysiology? Retina 31(2):222–228

    Article  CAS  PubMed  Google Scholar 

  25. Foos RY (1977) Vitreoretinal juncture, epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci 16(5):416–422

    CAS  PubMed  Google Scholar 

  26. Uchino E, Uemura A, Ohba N (2001) Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 119(10):1475–1479

    Article  CAS  PubMed  Google Scholar 

  27. Shimozono M, Oishi A, Hata M, Matsuki T, Ito S, Ishida K, Kurimoto Y (2012) The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am J Ophthalmol 153(4):698–704

    Article  PubMed  Google Scholar 

  28. Mitamura Y, Hirano K, Baba T, Yamamoto S (2009) Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol 93(2):171–175

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Morita S, Watanabe Y, Kaneko T, Yamane S, Kobayashi S, Arakawa A, Kadonosono K (2010) Inner Segment/Outer Segment Junction Assessed by Spectral-Domain Optical Coherence Tomography in Patients with Idiopathic Epiretinal Membrane. Am J Ophthalmol 150(6):834–839

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank Michael John (BA) of the Vita-Salute University in Milan, Italy for the English language editing of this manuscript.

Financial or material support for the research and the work: none.

The authors have no proprietary interest in the materials used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Pierro.

Additional information

The authors have full control of all primary data, and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data if requested.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierro, L., Gagliardi, M., Giatsidis, S. et al. Spectral-domain optical coherence tomography evaluation of vitreoretinal adhesions in idiopathic epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 252, 1041–1047 (2014). https://doi.org/10.1007/s00417-013-2546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2546-6

Keywords

Navigation