Skip to main content

Advertisement

Log in

A comparison of false positives in retinal nerve fiber layer, optic nerve head and macular ganglion cell-inner plexiform layer from two spectral-domain optical coherence tomography devices

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The incidence of false positive (FP) results of optic coherence tomography (OCT) retinal nerve fiber layer (RNFL) color code in healthy subjects can be very high with Cirrus OCT. Recent evidence has shown that OCT parameters derived from macular ganglion cell-inner plexiform layer (GCIPL) have excellent ability to discriminate between normal eyes and eyes with early glaucoma.

Methods

This was a prospective, cross-sectional study. One hundred eyes from 50 healthy volunteers underwent circumpapillary scanning by Cirrus and Spectralis OCT and macular scanning using Cirrus OCT. FP rates for each of the OCT parameters, using predefined criteria for an abnormal test were calculated. Comparative analysis was performed using the McNemar test. A generalized estimating equations model (GEE) was used to compare demographic and clinical factors between the eyes with normal findings and eyes with abnormal results.

Results

The overall RNFL color-code FP rate was significantly higher for Cirrus (39 %) than for Spectralis (18 %) (P = 0.000). The Spectralis RNFL FP rate showed no significant difference when compared to the FP rate by Cirrus GCIPL (13 %) and ONH (11 %) analysis. Axial length, mean spherical equivalent, presence of peripapillary atrophy, and tilted disc were significantly related to the RNFL FP occurrence displayed by both devices.

Conclusions

Spectralis might be more specific than Cirrus when evaluating the RNFL thickness for Caucasians and moderate myopic population. GCIPL and ONH analysis might be more useful than RNFL thickness to evaluate this population using Cirrus OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 9:1684–1691

    Article  Google Scholar 

  2. Wu H, de Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 8:470–476

    Google Scholar 

  3. Wu H, de Boer JF, Chen TC (2012) Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. Am J Ophthalmol 5:815–826

    Article  Google Scholar 

  4. Aref AA, Budenz DL (2010) Spectral domain optical coherence tomography in the diagnosis and management of glaucoma. Ophthalmic Surg Lasers Imaging 41 Suppl:S15–S27

    Google Scholar 

  5. Kim JH, Kim NR, Kim H, Lee ES, Seong GJ, Kim CY (2011) Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Jpn J Ophthalmol 3:220–227

    Article  Google Scholar 

  6. Kim NR, Lim H, Kim JH, Rho SS, Seong GJ, Kim CY (2011) Factors associated with false positives in retinal nerve fiber layer color codes from spectral-domain optical coherence tomography. Ophthalmology 9:1774–1781

    Article  Google Scholar 

  7. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL (2009) Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 7:501–505

    Article  Google Scholar 

  8. Hwang YH, Yoo C, Kim YY (2012) Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography. J Glaucoma 4:260–265

    Article  Google Scholar 

  9. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ (2012) Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol 3:312–318

    Article  Google Scholar 

  10. Witmer MT, Margo CE, Drucker M (2010) Tilted optic disks. Surv Ophthalmol 5:403–428

    Article  Google Scholar 

  11. Aref AA, Sayyad FE, Mwanza JC, Feuer WJ, Budenz DL (2012) Diagnostic specificities of retinal nerve fiber layer, optic nerve head, and macular ganglion cell-inner plexiform layer measurements in myopic eyes. J Glaucoma. doi:10.1097/IJG.0b013e31827b155b

  12. Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, Kagemann L, Schuman JS (2012) Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 11:1420–1425

    Article  Google Scholar 

  13. Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 11:8323–8329

    Article  Google Scholar 

  14. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, Godfrey DG, Carter R, Crandall AS (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 6:1151–1158

    Article  Google Scholar 

  15. Koh VT, Tham YC, Cheung CY, Wong WL, Baskaran M, Saw SM, Wong TY, Aung T (2012) Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci 9:5853–5859

    Article  Google Scholar 

  16. Mwanza JC, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, Peace JH, Werner JS, Wollstein G (2011) Profile and predictors of normal ganglion cell-inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 11:7872–7879

    Article  Google Scholar 

  17. Garcia ME, Fuertes LI, Javier Fernandez TF, Emilio Pablo JL (2011) [Usefulness of the new Spectral-Domain Optical Coherence Tomography (SD-OCT) devices in the study of degenerative dementias]. Arch Soc Esp Oftalmol 11:347–350

    Google Scholar 

  18. Rebolleda G, Gonzalez-Lopez JJ, Munoz-Negrete FJ, Oblanca N, Costa-Frossard L, Alvarez-Cermeno JC (2013) Color-code agreement among Stratus, Cirrus, and Spectralis optical coherence tomography in relapsing-remitting multiple sclerosis with and without prior optic neuritis. Am J Ophthalmol 5:890–897

    Article  Google Scholar 

  19. Mwanza JC, Oakley JD, Budenz DL, Anderson DR (2011) Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2:241–248

    Article  Google Scholar 

  20. Jeoung JW, Park KH (2010) Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Invest Ophthalmol Vis Sci 2:938–945

    Article  Google Scholar 

  21. Tay E, Seah SK, Chan SP, Lim AT, Chew SJ, Foster PJ, Aung T (2005) Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol 2:247–252

    Article  Google Scholar 

  22. Fan Q, Teo YY, Saw SM (2011) Application of advanced statistics in ophthalmology. Invest Ophthalmol Vis Sci 9:6059–6065

    Article  Google Scholar 

  23. Mwanza JC, Sayyad FE, Aref AA, Budenz DL (2012) Rates of abnormal retinal nerve fiber layer and ganglion cell layer OCT scans in healthy myopic eyes: Cirrus versus RTVue. Ophthalmic Surg Lasers Imaging 6:S67–S74

    Article  Google Scholar 

  24. Tan BB, Natividad M, Chua KC, Yip LW (2012) Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma 4:266–273

    Article  Google Scholar 

  25. Medina FJ, Callen CI, Rebolleda G, Munoz-Negrete FJ, Callen MJ, del Valle FG (2012) Use of nonmydriatic spectral-domain optical coherence tomography for diagnosing diabetic macular edema. Am J Ophthalmol 3:536–543

    Article  Google Scholar 

  26. Hong SW, Ahn MD, Kang SH, Im SK (2010) Analysis of peripapillary retinal nerve fiber distribution in normal young adults. Invest Ophthalmol Vis Sci 7:3515–3523

    Article  Google Scholar 

  27. Tariq YM, Samarawickrama C, Pai A, Burlutsky G, Mitchell P (2010) Impact of ethnicity on the correlation of retinal parameters with axial length. Invest Ophthalmol Vis Sci 10:4977–4982

    Article  Google Scholar 

  28. Rao HL, Kumar AU, Babu JG, Kumar A, Senthil S, Garudadri CS (2011) Predictors of normal optic nerve head, retinal nerve fiber layer, and macular parameters measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2:1103–1110

    Article  Google Scholar 

  29. Cheung CY, Chen D, Wong TY, Tham YC, Wu R, Zheng Y, Cheng CY, Saw SM, Baskaran M, Leung CK, Aung T (2011) Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Invest Ophthalmol Vis Sci 13:9629–9635

    Article  Google Scholar 

  30. Mwanza JC, Durbin MK, Budenz DL (2011) Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol 3:514–521

    Article  Google Scholar 

  31. Hwang YH, Yoo C, Kim YY (2012) Characteristics of peripapillary retinal nerve fiber layer thickness in eyes with myopic optic disc tilt and rotation. J Glaucoma 6:394–400

    Article  Google Scholar 

  32. Law SK, Tamboli DA, Giaconi J, Caprioli J (2010) Characterization of retinal nerve fiber layer in nonglaucomatous eyes with tilted discs. Arch Ophthalmol 128:141–142

    Google Scholar 

  33. Hwang YH, Kim YY (2012) Correlation between optic nerve head parameters and retinal nerve fibre layer thickness measured by spectral-domain optical coherence tomography in myopic eyes. Clin Experiment Ophthalmol 7:713–720

    Article  Google Scholar 

  34. Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 1:57–61

    Article  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Leal-Fonseca.

Additional information

Julio José Gonzalez-López M.D. contributed equally to this paper.

The results of this paper have not been presented in any conference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal-Fonseca, M., Rebolleda, G., Oblanca, N. et al. A comparison of false positives in retinal nerve fiber layer, optic nerve head and macular ganglion cell-inner plexiform layer from two spectral-domain optical coherence tomography devices. Graefes Arch Clin Exp Ophthalmol 252, 321–330 (2014). https://doi.org/10.1007/s00417-013-2529-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2529-7

Keywords

Navigation