Skip to main content

Advertisement

Log in

Quercetin inhibits choroidal and retinal angiogenesis in vitro

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Quercetin is a natural substance found abundantly in grapes, red wine and other food products. In this study, we examined the effect of quercetin on choroidal and retinal angiogenesis in vitro using rhesus choroids-retina endothelial cell line (RF/6A).

Methods

RF/6A cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum. Then cells were treated with different concentrations (from 0 to 100 μM) of quercetin. The cell proliferation was assessed using choromogenic methylthiazol tetrazolium bromide (MTT) dye after 24, 48 and 72 hours. Cell migration after 24-hour incubation with quercetin was investigated by wound assay. Following exposure to the various concentrations of quercetin for 24 hours, tube formation on matrigel by endothelial cells was also analyzed. Apoptosis was measured by flow cytometry using annexin V-FITC and propidium iodide staining.

Results

Quercetin inhibits endothelial cell proliferation in a dose-dependent fashion; 10.1%, 42.6% and 65.2% inhibition on treating with 10, 50 and 100 μM Quercetin respectively. The migration and tube formation of RA/6A cells were also significantly inhibited by quercetin in a dose-dependent manner. Flow cytometric analysis showed that the percentages of apoptotic cells were slightly increased only in 100 μM quercetin-treated cells.

Conclusions

Our results show that quercetin inhibits choroidal and retinal angiogenesis in vitro. Further studies are ongoing to evaluate this drug as a potential candidate for the treatment of choroidal or retinal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  2. Klagsbrun M., Moses MA (1999) Molecular angiogenesis. Chem Biol 6:217–224

    Article  Google Scholar 

  3. Ferris FL, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102:1640–1642

    PubMed  Google Scholar 

  4. Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27–31

    PubMed  CAS  Google Scholar 

  5. Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206

    Article  PubMed  CAS  Google Scholar 

  6. Aiello LP (2003) Perspectives on diabetic retinopathy. Am J Ophthalmol 136:122–135

    Article  PubMed  Google Scholar 

  7. Fielder AR, Reynolds JD (2001) Retinopathy of prematurity: clinical aspects. Semin Neonatol 6:461–475

    Article  PubMed  CAS  Google Scholar 

  8. Lamson D, Brignall M (2000) Antioxidants and cancer III: quercetin. Altern Med Rev 5:196–208

    PubMed  CAS  Google Scholar 

  9. Sellappan S, Akoh C (2002) Flavonoids and antioxidant capacity of Georgia grown Vidalia onions. J Agric Food Chem 50:5338–5342

    Article  PubMed  CAS  Google Scholar 

  10. Formica JV, Regelson W (1995) Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    Article  PubMed  CAS  Google Scholar 

  11. Lee K, Kim Y, Kim D et al (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    Article  PubMed  CAS  Google Scholar 

  12. Wilson WJ, Poellinger L (2002) The dietary flavonoid quercetin modulates HIF-1a activity in endothelial cells. Biochem Biophys Res Commun 293:446–450

    Article  PubMed  CAS  Google Scholar 

  13. Lou DA, Hu FN (1987) Co-distribution of Von Willebrand factor and fibronectin in cultured rhesus endothelial cells. Histochem J 19:431–438

    Article  PubMed  CAS  Google Scholar 

  14. Lou DA, HU FN (1987) Specific antigen and organelle expression of a long-term rhesus endothelial cell line. In Vitro Cell Dev Biol 23:75–85

    Article  PubMed  CAS  Google Scholar 

  15. Atsushi K, Norihito S, Maki O (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–400

    Article  Google Scholar 

  16. Shen SR, Yu HN, Chen P, Yin JJ, Xiong YJ (2007) Fatty acids in tea shoots and their effects on the growth of retinal RF/6A endothelial cell lines. Mol Nutr Food Res 51:221–228

    Article  PubMed  CAS  Google Scholar 

  17. Klein R, Klein BE, Moss SF et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. IV Diabetic macular edema. Ophthalmology 91:1464–1474

    PubMed  CAS  Google Scholar 

  18. Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184:301–310

    Article  PubMed  CAS  Google Scholar 

  19. Boer V, Dihal A, Woude H et al (2005) Tissue distribution of quercetin in rats and pigs. J Nutr 135:1718–1725

    PubMed  Google Scholar 

  20. Corvazier E, Maclouf J (1985) Interference of some flavonoids and non-steroidal anti-inflamatory drugs with oxidative metabolism of arachidonic acid by human platelets and neutrophilis. Biochem Biophys Acta 835:315–321

    PubMed  CAS  Google Scholar 

  21. Havesteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148

    Article  Google Scholar 

  22. Castillo MH, Perkins E, Campbell JH et al (1989) The effects of the bioflavonoid quercetin on squamous cell carcinoma of head and neck origin. Am J Surg 158:351–355

    Article  PubMed  CAS  Google Scholar 

  23. Rodgers EH, Grant MH (1998) The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF 7 human breast cancer cells. Chem Biol Interact 116:213–228

    Article  PubMed  CAS  Google Scholar 

  24. Fotsis T, Pepper MS, Aktas E et al (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 57:2916–2921

    PubMed  CAS  Google Scholar 

  25. Metodiewa D, Jaiswal AK, Cenas N et al (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Rad Biol Med 26:107–116

    Article  PubMed  CAS  Google Scholar 

  26. Agullo G, Gamet-Payrastre L, Manenti S et al (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53:1649–1657

    Article  PubMed  CAS  Google Scholar 

  27. Fabbro D, Buchdunger E, Wood J et al (1999) Inhibitors of protein kinases: CGP41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol Ther 82:293–301

    Article  PubMed  CAS  Google Scholar 

  28. Yoshiji H, Kuriyama S, Ways DK et al (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418

    PubMed  CAS  Google Scholar 

  29. Alexander V, Ljubimov S, Caballero AM (2004) Involvement of protein kinase CK2 in angiogenesis and retinal neovascularization. Invest Ophthalmol Vis Sc 45:4583–4591

    Article  Google Scholar 

  30. Jackson SJ, Venema RC (2006) Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J Nutr 136:1178–1184

    PubMed  CAS  Google Scholar 

  31. Kobayashi T, Nakata T, Kuzumaki T (2002) Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett 176:17–23

    Article  PubMed  CAS  Google Scholar 

  32. Kuo SM, Morehouse HF, Lin CP (1997) Effect of antiproliferative flavonoids on ascornic acid accumulation in human colon adenocarcinoma cells. Cancer Lett 116:131–137

    Article  PubMed  CAS  Google Scholar 

  33. Lamson DW, Brignall MS (2000) Antioxidants and cancer, Part 3: quercetin. Altern Med Rev 5:196–208

    PubMed  CAS  Google Scholar 

  34. Tan WF, Lin LP, Li MH et al (2003) Quercetin, a dietary—derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol 459:255–262

    Article  PubMed  CAS  Google Scholar 

  35. Csokay B, Prajda N, Weber G et al (1997) Molecular mechanisms in the antiproliferative action of quercetin. Life Sci 60:2157–2163

    Article  PubMed  CAS  Google Scholar 

  36. Richter M, Ebermann R, Marian B (1999) Quercetin—induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer 34:88–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Beijing Technology Star Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-xin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Li, Xx., Xing, Nz. et al. Quercetin inhibits choroidal and retinal angiogenesis in vitro. Graefes Arch Clin Exp Ophthalmol 246, 373–378 (2008). https://doi.org/10.1007/s00417-007-0728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0728-9

Keywords

Navigation