Abstract
Background
Progress in the field of microelectronics has led to the development of visual prostheses for the treatment of blinding diseases. Different concepts of retinal replacement are currently under investigation. The aim of the retinal prostheses is to replace the function of lost photoreceptors in degenerative diseases, such as retinitis pigmentosa.
Methods
Within the field of visual prosthetic developments mainly two retinal based concepts are under investigation. One of the concepts is the epiretinal implant which acquires images of an external camera and after preprocessing by a computer reading this visual information into the human visual system. In the subretinal prosthesis design concept an array of stimulation electrodes is placed in the subretinal space. True to the concept the image falling on the retina and its light impulses are converted into electrical currents by microphotodiodes and the retina is stimulated with these locally. To test the feasibility of the concepts the biocompatibility and to determine basic stimulation parameters a lot of animal experiments and first human experiments were carried out
Results
Currently the research conducted by teams in Germany, the USA and Japan into epiretinal and subretinal implants has reached the stage where clinical trials can now be performed. Individual pilot studies were carried out for both the epiretinal and the subretinal implant by different research groups
Discussion
The results achieved by the researchers indicate that cortical action potentials can be triggered by electric retinal stimulation with both concepts. The experimental work has highlighted a whole range of obstacles, not all of which have yet been fully resolved. These findings offer hope that coarse restoration of vision may be feasible by electrical stimulation.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Brindley GS (1973) Sensory effects of electrical stimulation of the visual and paravisual cortex in man. In: Jung R (ed) Handbook of sensory physiology, vol 7. Springer, Berlin Heidelberg New York, pp 583–594 (Sect. 3B)
Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16
Dobelle WH, Mladejovsky WG (1974b) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576
Dobelle WH, Mladejovsky MG, Girvin JP (1974a) Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444
Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP (1976) “Braille” reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112
Eckhorn R, Stett A, Schanze T, Gekeler F, Schwahn H, Zrenner E, Wilms M, Eger M, Hesse L (2001) Physiologische Funktionsprüfungen von Retinaimplantaten an Tiermodellen [Physiological functional evaluation of retinal implants in animal models]. Ophthalmologe 98:369–375
Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefes Arch Clin Exp Ophthalmol 238:840–845
Humayun MS, De Juan EJ (1998) Artificial vision. Eye 12:605–607
Humayun MS, Propst RH, De Juan EJ, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116
Humayun MS, De Juan EJ, Weiland JD, Greenberg R (1999a) An implantable neuro-stimulator device for a retinal prosthesis. IEEE International Solid-State Circuits TP 12.7 (Abstract)
Humayun MS, Weiland JD, De Juan EJ (1999b) Electrical stimulation of the human retina. In: Hollyfield JG, Anderson RE, LaVail MM (eds) Retinal degenerative diseases and experimental therapy. Plenum, New York, pp 479–485
Humayun MS, De Juan EJ, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999c) Pattern electrical stimulation of the human retina. Vision Res 39:2569–2576
Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, De Juan E Jr (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581
Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, De Juan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081
Normann RA, Maynard EM, Guillory KS, Warren DJ (1996) Cortical implants for the blind. IEEE Spectrum 33:54–59
Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587
Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275
Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–241
Rizzo JF, Wyatt JL (2000) Retinal prosthesis. In: Berger J, Fine SL, Maguire MG (eds) Age-related macular degeneration. Mosby, St. Louis, pp 413–432
Schwahn HN, Gekeler F, Sachs H, Kobuch K, Köhler M, Jakob W, Gabel V-P, Zrenner E (2000) Evoked cortical responses following multifocal electrical stimulation in the subretinal space of rabbit and micropig. Invest Ophthalmol Vis Sci 41:S102 (Abstract)
Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vision Res 40:1785–1795
Tassiker GE (1956) US Patent 2,760,483
Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186
Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery H-C, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552
Wyatt J, Rizzo JF, Grumet A, Edell D, Jensen RJ (1994) Development of a silicon retinal implant: epiretinal stimulation of retinal ganglion cells in the rabbit. Invest Ophthalmol Vis Sci 35:1380 (Abstract)
Yagi T, Ito Y, Kanda H, Tanaka S, Watanabe M, Uchikawa Y (1999) Hybrid retinal implant: fusion of engineering and neuroscience. IEEE 4:382–385
Zrenner E. (2002) Will retinal implants restore vision? Science 295:1022–1025
Zrenner E, Miliczek K-D, Gabel V-P, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280
Zrenner E, Gekeler F, Gabel V-P, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) Subretinales Mikrophotodioden-Array als Ersatz für degenerierte Photorezeptoren? [Subretinal microphotodiode array as replacement for degenerated photoreceptors?]. Ophthalmologe 98:357–363
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sachs, H.G., Gabel, VP. Retinal replacement—the development of microelectronic retinal prostheses—experience with subretinal implants and new aspects. Graefe's Arch Clin Exp Ophthalmol 242, 717–723 (2004). https://doi.org/10.1007/s00417-004-0979-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00417-004-0979-7