Skip to main content

Advertisement

Log in

Longitudinal changes in the macula and optic nerve in familial dysautonomia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

A Correction to this article was published on 02 January 2021

This article has been updated

Abstract

Objective

Familial Dysautonomia (FD) disease, lacks a useful biomarker for clinical monitoring. In this longitudinal study we characterized the structural changes in the macula, peripapillary and the optic nerve head (ONH) regions in subjects with FD.

Methods

Data was consecutively collected from subjects attending the FD clinic between 2012 and 2019. All subjects were imaged with spectral-domain Optical Coherence Tomography (OCT). Global and sectoral measurements of mean retinal nerve fiber layer (RNFL) and macular ganglion cell and inner plexiform layer (GCIPL) thickness, and ONH parameters of rim area, average cup-to-disc (C:D) ratio, and cup volume were used for the analysis. The best fit models (linear, quadratic and broken stick linear model) were used to describe the longitudinal change in each of the parameters.

Results

91 subjects (149 eyes) with FD of ages 5–56 years were included in the analysis. The rate of change for average RNFL and average GCIPL thicknesses were significant before reaching a plateau at the age of 26.2 for RNFL and 24.8 for GCIPL (− 0.861 µm/year (95% CI − 1.026, − 0.693) and − 0.553 µm/year (95% CI − 0.645, − 0.461), respectively). Significant linear rate of progression was noted for all ONH parameters, except for a subset of subjects (24%), with no cupping that did not show progression in any of the ONH parameters.

Conclusions

The rapidly declining RNFL and GCIPL can explain the progressive visual impairment previously reported in these subjects. Among all structural parameters, ONH parameters might be most suitable for longitudinal follow-up, in eyes with a measurable cup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not availanble.

Change history

References

  1. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148

    Article  Google Scholar 

  2. Dong J, Edelmann L, Bajwa AM, Kornreich R, Desnick RJ (2002) Familial dysautonomia: detection of the IKBKAP IVS20+6T → C and R696P mutations and frequencies among Ashkenazi Jews. Am J Med Genet 110(3):253–257

    Article  Google Scholar 

  3. Mendoza-Santiesteban CE, Hedges TR, Norcliffe-Kaufmann L, Axelrod F, Kaufmann H (2014) Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261(4):702–709

    Article  Google Scholar 

  4. Axelrod FB, Lyer K, Fish I (1981) Progressive sensory loss in familial dysautonomia. Pediatrics 67(4):517–522

    CAS  PubMed  Google Scholar 

  5. Norcliffe-Kaufmann L, Axelrod F, Kaufmann H (2010) Afferent baroreflex failure in familial dysautonomia. Neurology 75(21):1904–1911

    Article  Google Scholar 

  6. Norcliffe-Kaufmann L, Kaufmann H (2012) Familial dysautonomia (Riley-Day syndrome): when baroreceptor feedback fails. Auton Neurosci Basic Clin 172(1–2):26–30

    Article  CAS  Google Scholar 

  7. Macefield VG, Norcliffe-Kaufmann L, Axelrod FB, Kaufmann H (2013a) Cardiac-locked bursts of muscle sympathetic nerve activity are absent in familial dysautonomia. J Physiol 591(3):689–700

    Article  CAS  Google Scholar 

  8. Macefield VG, Norcliffe-Kaufmann L, Gutiérrez J, Axelrod FB, Kaufmann H (2011) Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome? Brain 134(11):3198–3208

    Article  Google Scholar 

  9. Josaitis CA, Matisoff M (2002) Familial dysautonomia in review: diagnosis and treatment of ocular manifestations. Adv Exp Med Biol 506:71–80

    Article  Google Scholar 

  10. Mendoza-Santiesteban CE, Hedges TR, Norcliffe-Kaufmann L et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuro-Ophthalmol 32(1):23–26

    Article  Google Scholar 

  11. Macefield VG, Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013b) Relationship between proprioception at the knee joint and gait ataxia in HSAN III. Mov Disord 28(6):823–827

    Article  Google Scholar 

  12. Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4(12):664–675

    Article  Google Scholar 

  13. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  Google Scholar 

  14. Leung CKS (2014) Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol 25(2):104–111

    Article  Google Scholar 

  15. Dong ZM, Wollstein G, Schuman JS (2016) Clinical utility of optical coherence tomography in glaucoma. Investig Ophthalmol Vis Sci 57:556–567

    Article  Google Scholar 

  16. Sung KR, Sun JH, Na JH, Lee JY, Lee Y (2012) Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 119(2):308–313

    Article  Google Scholar 

  17. Lavinsky F, Wu M, Schuman JS et al (2018) Can macula and optic nerve head parameters detect glaucoma progression in eyes with advanced circumpapillary retinal nerve fiber layer damage? Ophthalmology 125(12):1907–1912

    Article  Google Scholar 

  18. Jennrich RI, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42(4):805–820

    Article  CAS  Google Scholar 

  19. Schluchter MD (1988) Analysis of incomplete multivariate data using linear models with structured covariance matrices. Stat Med 7:317–324

    Article  CAS  Google Scholar 

  20. Elía N, Pueyo V, Altemir I, Oros D, Pablo LE (2012) Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol 96(5):665–670

    Article  Google Scholar 

  21. Celebi ARC, Mirza GE (2013) Age-related change in retinal nerve fiber layer thickness measured with spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 54:8095–8103

    Article  Google Scholar 

  22. Mwanza JC, Budenz DL, Warren JL et al (2015) Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 99(6):732–737

    Article  Google Scholar 

  23. Riley CM, Day RL (1949) Central autonomic dysfunction with defective lacrimation; report of five cases. Pediatrics 3(4):468–478

    CAS  PubMed  Google Scholar 

  24. Liebman SD (1956) Ocular manifestations of Riley-Day syndrome. AMA Arch Ophthalmol 56(5):719

    Article  CAS  Google Scholar 

  25. Kroop IG (1956) The production of tears in familial dysautonomia. Preliminary report. J Pediatr 48(3):328–329

    Article  CAS  Google Scholar 

  26. Mwanza JC, Kim HY, Budenz DL et al (2015) Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Investig Ophthalmol Vis Sci 56(11):6344–6351

    Article  Google Scholar 

  27. Wu H, De Boer JF, Chen TC (2011) Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography. J Glaucoma 20(8):470–476

    Article  Google Scholar 

  28. Tewarie P, Balk L, Costello F et al (2012) The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 7(4):e34823

    Article  CAS  Google Scholar 

  29. Mendoza-Santiesteban CE, Palma JA, Hedges TR et al (2017) Pathological confirmation of optic neuropathy in familial dysautonomia. J Neuropathol Exp Neurol 76(3):238–244

    Article  CAS  Google Scholar 

  30. Sadun AA, Win PH, Ross-Cisneros FN et al (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–235

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies - Disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114

    Article  CAS  Google Scholar 

  32. Fraser JA, Biousse V, Newman NJ (2010) The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 55(4):299–334

    Article  Google Scholar 

  33. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Investig Ophthalmol Vis Sci 29(7):1151–1158

    CAS  Google Scholar 

  34. Borchert M, Garcia-Filion P (2008) The syndrome of optic nerve hypoplasia. Curr Neurol Neurosci Rep 8(5):395–403

    Article  Google Scholar 

Download references

Funding

NIH R01-EY013178, a grant from the Familial Dysautonomia Foundation, and unrestricted grant from Research to Prevent Blindness. The sponsor or funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HK; methodology: LN-K and HK; formal analysis and investigation: JK, MW, ML, and GW; writing—original draft preparation: JK and GW; writing—review and editing: LR, JSS, HI, IMV, CM-S, JAP, LN-K, BM, and HK; funding acquisition: JSS and HK.

Corresponding author

Correspondence to Joel S. Schuman.

Ethics declarations

Conflicts of interest

Joel S. Schuman: Royalties from intellectual property licensed by Massachusetts institute of Technology and Massachusetts Eye and Ear infirmary to Zeiss. None of the other authors have any conflict of interest to declare.

Ethics approval

The institutional review board and ethics committee at NYU Langone Health approved the study. The study has been performed in accordance with the ethical standards laid down in the Declaration of Helsinki. Enrollment was voluntary and a written informed consent was obtained from all subjects or their legal proxy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kfir, J., Wu, M., Liu, M. et al. Longitudinal changes in the macula and optic nerve in familial dysautonomia. J Neurol 268, 1402–1409 (2021). https://doi.org/10.1007/s00415-020-10298-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10298-4

Keywords

Navigation