Skip to main content

Advertisement

Log in

Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objectives

To assess RNFL thickness in ALS patients and compare it to healthy controls, and to detect possible correlations between RNFL thickness in ALS patients and disease severity and duration.

Methods

Study population consisted of ALS patients and age- and sex-matched controls. We used the revised ALS functional rating scale (ALSFRS-R) as a measure of disease severity. RNFL thickness in the four quadrants were measured with a spectral domain OCT (Topcon 3D, 2015).

Results

We evaluated 20 ALS patients (40 eyes) and 25 healthy matched controls. Average RNFL thickness in ALS patients was significantly reduced compared to controls (102.57 ± 13.46 compared to 97.11 ± 10.76, p 0.04). There was a significant positive correlation between the functional abilities of the patients based on the ALSFRS-R and average RNFL thickness and also RNFL thickness in most quadrants. A linear regression analysis proved that this correlation was independent of age. In ALS patients, RNFL thickness in the nasal quadrant of the left eyes was significantly reduced compared to the corresponding quadrant in the right eyes even after adjustment for multiplicity (85.80 ± 23.20 compared to 96.80 ± 16.96, p = 0.008).

Conclusion

RNFL thickness in ALS patients is reduced compared to healthy controls. OCT probably could serve as a marker of neurodegeneration and progression of the disease in ALS patients. RNFL thickness is different among the right and left eyes of ALS patients pointing to the fact that asymmetric CNS involvement in ALS is not confined to the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guo F, Liu X, Cai H, Le W (2017) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. http://www.ncbi.nlm.nih.gov/pubmed/28703923. Accessed 7 Aug 2017

  2. Joensen P (2012) Incidence of amyotrophic lateral sclerosis in the Faroe Islands. Acta Neurol Scand 126(1):62–66. https://doi.org/10.1111/j.1600-0404.2011.01611.x

    Article  PubMed  CAS  Google Scholar 

  3. Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 9:1–11

    Article  CAS  Google Scholar 

  4. Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R et al (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129

    Article  PubMed  CAS  Google Scholar 

  5. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6(11):994–1003

    Article  PubMed  CAS  Google Scholar 

  6. Mezzapesa DM, Ceccarelli A, Dicuonzo F, Carella A, De Caro MF, Lopez M et al (2007) Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 28(2):255–259

    PubMed  CAS  Google Scholar 

  7. Kassubek J, Unrath A, Huppertz H, Lulé D, Ethofer T, Sperfeld A et al (2005) Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler 6(4):213–220

    Article  Google Scholar 

  8. Meoded A, Kwan JY, Peters TL, Huey ED, Danielian LE, Wiggs E et al (2013) Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis. Dement Geriatr Cogn Dis Extra 3(1):233–250

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74(1):20–38. https://doi.org/10.1002/ana.23937

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217

    Article  PubMed  CAS  Google Scholar 

  11. Altintaş O, Işeri P, Ozkan B, Cağlar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116(2):137–146

    Article  PubMed  Google Scholar 

  12. Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ (2012) Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. Paul F, editor. PLoS One 7(5):e36847. https://doi.org/10.1371/journal.pone.0036847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Hafler BP, Klein ZA, Jimmy Zhou Z, Strittmatter SM (2014) Progressive retinal degeneration and accumulation of autofluorescent lipopigments in progranulin deficient mice. Brain Res 1588:168–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Ward ME, Taubes A, Chen R, Miller BL, Sephton CF, Gelfand JM et al (2014) Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. J Exp Med 211(10):1937–1945. https://doi.org/10.1084/jem.20140214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  PubMed  CAS  Google Scholar 

  16. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169(1–2):13–21

    Article  PubMed  CAS  Google Scholar 

  17. Cheung CY, Ong YLTL, Hilal S, Ikram MK, Low S, Ong YLTL et al (2015) Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis Retin Ganglion Cell Anal MCI AD (IOS Press) 45(1):45–56

    CAS  Google Scholar 

  18. Kromer R, Serbecic N, Hausner L, Froelich L, Beutelspacher SC (2013) Comparison of Visual evoked potentials and retinal nerve fiber layer thickness in Alzheimer’s disease. Front Neurol 4:203

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 420(2):97–99

    Article  PubMed  CAS  Google Scholar 

  20. Coric D, Balk LJ, Verrijp M, Eijlers A, Schoonheim MM, Killestein J et al (2017) Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler. https://doi.org/10.1177/1352458517694090

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stellmann J-P, Cetin H, Young KL, Hodecker S, Pöttgen J, Bittersohl D et al (2017) Pattern of gray matter volumes related to retinal thickness and its association with cognitive function in relapsing-remitting MS. Brain Behav 7(2):e00614

    Article  PubMed  Google Scholar 

  22. Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, Soudi R, Shahidi G (2013) Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci 34(5):689–693

    Article  PubMed  Google Scholar 

  23. Moreno-Ramos T, Benito-León J, Villarejo A, Bermejo-Pareja F (2013) Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimer’s Dis (IOS Press) 34(3):659–664

    Article  CAS  Google Scholar 

  24. Langwińska-Wośko E, Litwin T, Dzieżyc K, Karlinski M, Członkowska A (2017) Optical coherence tomography as a marker of neurodegeneration in patients with Wilson’s disease. Acta Neurol Belg 117(4):867–871

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth NM, Saidha S, Zimmermann H, Brandt AU, Oberwahrenbrock T, Maragakis NJ et al (2013) Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 20(8):1170–1176

    Article  PubMed  CAS  Google Scholar 

  26. Ringelstein M, Albrecht P, Südmeyer M, Harmel J, Müller A-K, Keser N et al (2014) Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 1(4):290–297

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hübers A, Müller HP, Dreyhaupt J, Böhm K, Lauda F, Tumani H et al (2016) Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. J Neural Transm 123(3):281–287. https://doi.org/10.1007/s00702-015-1483-4

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Q, Mao C, Jin J, Niu C, Bai L, Dang J et al (2014) Side of limb-onset predicts laterality of gray matter loss in amyotrophic lateral sclerosis. Biomed Res Int 2014:1–11

    Google Scholar 

  29. Fiori F, Sedda A, Ferrè ER, Toraldo A, Querzola M, Pasotti F et al (2013) Exploring motor and visual imagery in amyotrophic lateral sclerosis. Exp brain Res 226(4):537–547

    Article  PubMed  CAS  Google Scholar 

  30. d’Ambrosio A, Gallo A, Trojsi F, Corbo D, Esposito F, Cirillo M et al (2014) Frontotemporal cortical thinning in amyotrophic lateral sclerosis. Am J Neuroradiol 35(2):304–310

    Article  PubMed  Google Scholar 

  31. Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD (2014) Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph Lateral Scler Front Degener 15(7–8):481–487. https://doi.org/10.3109/21678421.2014.906617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FHA: study concept and design, acquisition of data, preparing the manuscript. AM: analysis and interpretation of data. BZ: acquisition of data, study supervision. MMS: acquisition of data. MR: study concept and design, critical revision of manuscript for intellectual content, study supervision.

Corresponding author

Correspondence to Fahimeh Haji Akhoundi.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Ethical standard

The study was approved by the institutional ethics committee (Medical school ethics committee, Iran University of Medical Sciences).

Informed consent

Informed consents were signed by all patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohani, M., Meysamie, A., Zamani, B. et al. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol 265, 1557–1562 (2018). https://doi.org/10.1007/s00415-018-8863-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8863-2

Keywords

Navigation