Skip to main content

Advertisement

Log in

Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and aims

Due to common pathophysiological findings of Alzheimer’s disease (AD) with diabetes mellitus (DM), insulin has been suggested as a possible treatment of AD or mild cognitive impairment (MCI). A safe alternative of IV insulin is intranasal (IN) insulin. The aim of this systematic review is to investigate the effects of IN insulin on cognitive function of patients with either AD or MCI.

Methods

A literature search of the electronic databases Medline, Scopus and CENTRAL was performed to identify RCTs investigating the effect of IN insulin administration on cognitive tasks, in patients with AD or MCI.

Results

Seven studies (293 patients) met our inclusion criteria. Most studies showed that verbal memory and especially story recall was improved after IN insulin administration. Sometimes the effect was restricted for apoe4 (−) patients. Intranasal insulin did not affect other cognitive functions. However, there were some positive results in functional status and daily activity. Data suggested that different insulin types and doses may have different effects on different apoe4 groups. In addition, the effects of treatment on Αβ levels differed from study to study. Finally, IN insulin resulted in minor adverse effects.

Conclusions

Intranasal insulin improved story recall performance of apoe4 (−) patients with AD or MCI. Other cognitive functions were not affected, but there were some positive results in functional status and daily activity. Since IN insulin is a safe intervention, future studies should be conducted with larger doses and after proper selection of patients and insulin types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keuck L (2017) Slicing the cortex to study mental illness: alois Alzheimer’s pictures of equivalence. Prog Brain Res 233:25–51

    Article  PubMed  Google Scholar 

  2. Fiest KM, Roberts JI, Maxwell CJ, Hogan DB, Smith EE, Frolkis A et al (2016) The prevalence and incidence of dementia due to Alzheimer’s disease: a systematic review and meta-analysis. Can J Neurol Sci Le journal canadien des sciences neurologiques 43(Suppl 1):S51–S82

    Article  Google Scholar 

  3. Olazaran J, Aguera-Ortiz L, Argimon JM, Reed C, Ciudad A, Andrade P et al (2017) Costs and quality of life in community-dwelling patients with Alzheimer’s disease in Spain: results from the GERAS II observational study. Int Psychogeriatr 29(12):2081–2093

    Article  PubMed  Google Scholar 

  4. Birks JS, Grimley EJ (2015) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 10(4):Cd001191

    Google Scholar 

  5. Jiang J, Jiang H (2015) Efficacy and adverse effects of memantine treatment for Alzheimer’s disease from randomized controlled trials. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 36(9):1633–1641

    Google Scholar 

  6. Liao X, Li G, Wang A, Liu T, Feng S, Guo Z et al (2015) Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis. JAD 48(2):463–472

    Article  PubMed  Google Scholar 

  7. Yang M, Xu DD, Zhang Y, Liu X, Hoeven R, Cho WC (2014) A systematic review on natural medicines for the prevention and treatment of Alzheimer’s disease with meta-analyses of intervention effect of ginkgo. Am J Chin Med 42(3):505–521

    Article  PubMed  Google Scholar 

  8. Tsolaki MN, Koutsouraki ES, Katsipis GK, Myserlis P Gr., Chatzithoma MA, Pantazaki AA (2017) Alternative anti-infective/anti-inflammatory therapeutic options for fighting Alzheimer’s disease. In: Frontiers in anti-infective drug discovery, chap 1, vol 6. Bentham Science Publishers, pp 1–153

  9. Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes–systematic overview of prospective observational studies. Diabetologia 48(12):2460–2469

    Article  PubMed  CAS  Google Scholar 

  10. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74

    Article  PubMed  Google Scholar 

  11. Stanley M, Macauley SL, Holtzman DM (2016) Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J Exp Med 213(8):1375–1385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochem Biophys Acta 1792(5):482–496

    PubMed  CAS  Google Scholar 

  13. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106(6):1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P et al (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21(8):2561–2570

    Article  PubMed  CAS  Google Scholar 

  16. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD et al (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56(12):1135–1140

    Article  PubMed  CAS  Google Scholar 

  17. Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y et al (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 17(1):123–130

    Article  PubMed  CAS  Google Scholar 

  18. Hanson LR, Frey WH 2nd (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9(Suppl 3):S5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Freiherr J, Hallschmid M, Frey WH 2nd, Brunner YF, Chapman CD, Holscher C et al (2013) Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27(7):505–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V (2015) Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res 6(4):264–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Holscher C (2014) First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s Dementi 10(1 Suppl):S33–S37

    Article  Google Scholar 

  22. Reger MA, Craft S (2006) Intranasal insulin administration: a method for dissociating central and peripheral effects of insulin. Drugs Today (Barcelona, Spain: 1998) 42(11):729–739

    Article  CAS  Google Scholar 

  23. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV et al (2001) Current concepts in mild cognitive impairment. Arch Neurol 58(12):1985–1992

    Article  PubMed  CAS  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed). 339:b2535

    Article  PubMed Central  Google Scholar 

  25. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed). 343:d5928

    Article  PubMed Central  Google Scholar 

  26. Claxton A, Wilkinson C, Baker L, Watson G, Bonner LM, Trittschuh E et al (2012) Intranasal insulin treatment response in Alzheimer’s disease influenced by glucose-stimulated insulin secretion. Alzheimer’s Dementia 8(4 suppl. 1):[P582 p.]. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/247/CN-01031247/frame.html. Accessed 25 May 2017

  27. Craft S, Claxton A, Hanson A, Cholerton B, Neth B, Trittschuh E et al (2014) Therapeutic effects of intranasal insulin and insulin analogues on cognition and MRI measures in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Dementia 10:[P126 p.]. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/790/CN-01056790/frame.html. Accessed 25 May 2017

  28. Rosenbloom M, Barclay T, Pyle M, Owens B, Anderson C, Frey W et al (2013) The effect of intranasal rapid acting insulin on ApoE-epsilon4 carriers with mild-to-moderate Alzheimer’s disease. Alzheimer’s Dementia 9(4 suppl. 1):[P888 p.]. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/845/CN-01060845/frame.html. Accessed 25 May 2017

  29. Main (2007) Intranasal insulin and memory in early Alzheimer’s disease. ClinicalTrialsgov. http://clinicaltrials.gov. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/747/CN-00724747/frame.html. Accessed 25 May 2017

  30. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A et al (2015) Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. JAD 44(3):897–906

    Article  PubMed  CAS  Google Scholar 

  31. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  32. Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML et al (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27(3):451–458

    Article  PubMed  CAS  Google Scholar 

  33. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA et al (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. JAD 13(3):323–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6):440–448

    Article  PubMed  CAS  Google Scholar 

  35. Rosenbloom MH, Barclay TR, Pyle M, Owens BL, Cagan AB, Anderson CP et al (2014) A single-dose pilot trial of intranasal rapid-acting insulin in apolipoprotein E4 carriers with mild-moderate Alzheimer’s disease. CNS Drugs 28(12):1185–1189

    Article  PubMed  CAS  Google Scholar 

  36. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH et al (2017) Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. JAD 57(4):1325–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K et al (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28(6):809–822

    Article  PubMed  CAS  Google Scholar 

  38. Craft S, Asthana S, Schellenberg G, Baker L, Cherrier M, Boyt AA et al (2000) Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci 903:222–228

    Article  PubMed  CAS  Google Scholar 

  39. Craft S, Asthana S, Schellenberg G, Cherrier M, Baker LD, Newcomer J et al (1999) Insulin metabolism in Alzheimer’s disease differs according to apolipoprotein E genotype and gender. Neuroendocrinology 70(2):146–152

    Article  PubMed  CAS  Google Scholar 

  40. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM et al (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254

    Article  PubMed  CAS  Google Scholar 

  41. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M et al (2005) Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. Am J Epidemiol 161(7):639–651

    Article  PubMed  Google Scholar 

  42. Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS et al (2004) Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 25(3):311–314

    Article  PubMed  CAS  Google Scholar 

  43. Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci USA 98(6):3334–3339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci USA 101(1):284–289

    Article  PubMed  CAS  Google Scholar 

  45. Valla J, Yaari R, Wolf AB, Kusne Y, Beach TG, Roher AE et al (2010) Reduced posterior cingulate mitochondrial activity in expired young adult carriers of the APOE epsilon4 allele, the major late-onset Alzheimer’s susceptibility gene. JAD 22(1):307–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278(16):1349–1356

    Article  PubMed  CAS  Google Scholar 

  47. Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364

    Article  PubMed  CAS  Google Scholar 

  48. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    Article  PubMed  CAS  Google Scholar 

  49. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 32(1):[239–43 pp.]. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/869/CN-00571869/frame.html. Accessed 15 Nov 2017

  50. Pandyarajan V, Weiss MA (2012) Design of non-standard insulin analogs for the treatment of diabetes mellitus. Curr DiabRep 12(6):697–704

    Article  CAS  Google Scholar 

  51. Wada T, Azegami M, Sugiyama M, Tsuneki H, Sasaoka T (2008) Characteristics of signalling properties mediated by long-acting insulin analogue glargine and detemir in target cells of insulin. Diabetes Res Clin Pract 81(3):269–277

    Article  PubMed  CAS  Google Scholar 

  52. Colton CA, Needham LK, Brown C, Cook D, Rasheed K, Burke JR et al (2004) APOE genotype-specific differences in human and mouse macrophage nitric oxide production. J Neuroimmunol 147(1–2):62–67

    Article  PubMed  CAS  Google Scholar 

  53. Hallschmid M, Jauch-Chara K, Korn O, Molle M, Rasch B, Born J et al (2010) Euglycemic infusion of insulin detemir compared with human insulin appears to increase direct current brain potential response and reduces food intake while inducing similar systemic effects. Diabetes 59(4):1101–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kupila A, Sipila J, Keskinen P, Simell T, Knip M, Pulkki K et al (2003) Intranasally administered insulin intended for prevention of type 1 diabetes—a safety study in healthy adults. Diabetes/Metabol Res Rev 19(5):415–420

    Article  CAS  Google Scholar 

  55. Novak V, Milberg W, Hao Y, Munshi M, Novak P, Galica A et al (2014) Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care 37(3):751–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Frauman AG, Jerums G, Louis WJ (1987) Effects of intranasal insulin in non-obese type II diabetics. Diabetes Res Clin Pract 3(4):197–202

    Article  PubMed  CAS  Google Scholar 

  57. Lalej-Bennis D, Boillot J, Bardin C, Zirinis P, Coste A, Escudier E et al (2001) Six month administration of gelified intranasal insulin in 16 type 1 diabetic patients under multiple injections: efficacy vs subcutaneous injections and local tolerance. Diabetes Metabol 27(3):372–377

    CAS  Google Scholar 

  58. Frauman AG, Cooper ME, Parsons BJ, Jerums G, Louis WJ (1987) Long-term use of intranasal insulin in insulin-dependent diabetic patients. Diabetes Care 10(5):573–578

    Article  PubMed  CAS  Google Scholar 

  59. Lalej-Bennis D, Boillot J, Bardin C, Zirinis P, Coste A, Escudier E et al (2001) Efficacy and tolerance of intranasal insulin administered during 4 months in severely hyperglycaemic Type 2 diabetic patients with oral drug failure: a cross-over study. Diabetic Med 18(8):614–618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KLA: Study concept, design and writing of the manuscript (including tables). GK: Data collection process (literature search, flow diagram and data extraction from the included studies). AM: Data collection process (literature search, flow diagram and data extraction from the included studies). DK: Assessment of risk of bias of the included studies (including the respective figures of “Risk of bias”). PM: Contribution to methodology and design of the study, helped with the disagreements of literature search and data extraction which were originally conducted by Dr. Kalaitzidis and Dr. Malli, reviewed the initial draft. VSL: Critical revision of the manuscript for important intellectual content, approval of the paper.

Corresponding author

Correspondence to Konstantinos Ioannis Avgerinos.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding

This study was not sponsored by any company. Dr. Avgerinos reports no disclosures. Dr. Kalaitzidis reports no disclosures. Dr. Malli reports no disclosures. Dr. Kalaitzoglou reports no disclosures. Dr. Myserlis reports no disclosures. Dr. Lioutas reports no disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avgerinos, K.I., Kalaitzidis, G., Malli, A. et al. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol 265, 1497–1510 (2018). https://doi.org/10.1007/s00415-018-8768-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8768-0

Keywords

Navigation