Skip to main content
Log in

Comparison of the clinical and cognitive features of genetically positive ALS patients from the largest tertiary center in Serbia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Discovering novel mutations in C9orf72, FUS, ANG, and TDP-43 genes in ALS patients arises necessities for better clinical characterizations of these subjects. The aim is to determine clinical and cognitive profile of genetically positive Serbian ALS patients. 241 ALS patients were included in the study (17 familiar and 224 apparently sporadic). The following genes were analyzed: SOD1, C9orf72, ANG, FUS, and TDP-43. An extensive battery of classic neuropsychological tests was used in 27 ALS patients (22 SOD1 positive and 5 SOD1 negative) and 82 healthy controls (HCs). Overall 37 (15.4%) of 241 ALS patients carried mutations in tested genes—among 17 familiar ALS patients 16 (94.1%) were positive and among 224 apparently sporadic 21 (9.4%) had causative mutation. Mutations in SOD1 gene were the most common, representing 27 (73.0%) of all genetically positive ALS patients. The main clinical characteristics of SOD1 positive patients were: spinal onset in lower extremities, common sphincter and sensitive disturbances, and dysexecutive syndrome. Within SOD1 positive patients, we noticed somewhat earlier onset in patients with A145G, sensory and sphincter disturbances were dominant in patients with L144F, while D90A patients had significant sensory involvement. SOD1 negative group consisted of ten (27.0%) patients (six C9orf72, two ANG, one TDP-43, and one patient baring triple FUS, C9orf72 expansion, and ANG variants). Bulbar involvement and more extensive neuropsychological impairment (including executive, visuospatial, and memory difficulties) were the main features of SOD1 negative cohort. Our results suggest that meaningful clinical suspicion of certain ALS genotype might be made based on thorough clinical evaluation of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wicks P, Abrahams S, Papps B, Al-Chalabi A, Shaw CE, Leigh PN (2009) Goldstein LH.SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J Neurol 256(2):234–241

    Article  CAS  PubMed  Google Scholar 

  3. Li HF, Wu ZY (2016) Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Blitterswijk M, Vlam L, van Es MA, van der Pol WL, Hennekam EA, Dooijes D, Schelhaas HJ, van der Kooi AJ, de Visser M, Veldink JH, van den Berg LH (2012) Genetic overlap between apparently sporadic motor neuron diseases. PLoS One 7(11):e48983

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chiò A, Calvo A, Mazzini L, Cantello R, Mora G, Moglia C, Corrado L, D’Alfonso S, Majounie E, Renton A, Pisano F, Ossola I, Brunetti M, Traynor BJ (2012) Restagno G; PARALS. Extensive genetics of ALS: a population-based study in Italy. Neurology 79(19):1983–1989

    Article  PubMed  PubMed Central  Google Scholar 

  6. Battistini S, Ricci C, Giannini F, Calzavara S, Greco G, Del Corona A, Mancuso M, Battistini N, Siciliano G, Carrera P (2010) G41S SOD1 mutation: a common ancestor for six ALS Italian families with an aggressive phenotype. Amyotroph Lateral Scler 11:210–215

    Article  CAS  PubMed  Google Scholar 

  7. Kaur SJ, McKeown SR, Rashid S (2016) Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577(2):109–118

    Article  CAS  PubMed  Google Scholar 

  8. Yokoseki A, Shiga A, Tan CF, Tagawa A, Kaneko H, Koyama A, Eguchi H, Tsujino A, Ikeuchi T, Kakita A, Okamoto K, Nishizawa M, Takahashi H, Onodera O (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63(4):538–542

    Article  CAS  PubMed  Google Scholar 

  9. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574

    Article  CAS  PubMed  Google Scholar 

  10. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208

    Article  CAS  PubMed  Google Scholar 

  11. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M; ITALSGEN Consortium., Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.Neuron 72(2):257–268

  14. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El, Escorial revisited: revisedcriteria for the diagnosis of amyotrophic lateral sclerosis. World Federation of Neurology Research Group on Motor Neuron Diseases. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  15. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169(1–2):13–21

    Article  CAS  PubMed  Google Scholar 

  16. Pavlovic D (2003) Dijagnosticki testovi u neuropsihologiji, II edn. Grafos, Beograd

    Google Scholar 

  17. Masè G, Ros S, Gemma A, Bonfigli L, Carraro N, Cazzato G, Rolfo M, Zanconati F, Sepcic J, Jurjevic A, Pirulli D, Boniotto M, Zezlina S, Crovella S, Amoroso A (2001) ALS with variable phenotypes in a six-generation family caused by Leu144Phe mutation in the SOD1 gene. J Neurol Sci 191:11–18

    Article  PubMed  Google Scholar 

  18. Özoğuz A, Uyan Ö, Birdal G, Iskender C, Kartal E, Lahut S, Ömür Ö, Agim ZS, Eken AG, Sen NE, Kavak P, Saygı C, Sapp PC, Keagle P, Parman Y, Tan E, Koç F, Deymeer F, Oflazer P, Hanağası H, Gürvit H, Bilgiç B, Durmuş H, Ertaş M, Kotan D, Akalın MA, Güllüoğlu H, Zarifoğlu M, Aysal F, Döşoğlu N, Bilguvar K, Günel M, Keskin Ö, Akgün T, Özçelik H, Landers JE, Brown RH, Başak AN (2015) The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 36(4):1764.e9–1764.e18

  19. Lysogorskaia EV, Abramycheva NY, Zakharova MN, Stepanova MS, Moroz AA, Rossokhin AV, Illarioshkin SN (2015) Genetic studies of Russian patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 17(1–2):135–141

    PubMed  Google Scholar 

  20. Giannini F, Battistini S, Mancuso M, Greco G, Ricci C, Volpi N, Del Corona A, Piazza S, Siciliano G (2010) D90A-SOD1 mutation in ALS: The first report of heterozygous Italian patients and unusual findings. Amyotroph Lateral Scler 11(1–2):216–219

    Article  CAS  PubMed  Google Scholar 

  21. Luigetti M, Conte A, Madia F, Marangi G, Zollino M, Mancuso I, Dileone M, Del Grande A, Di Lazzaro V, Tonali PA, Sabatelli M (2009) Heterozygous SOD1 D90A mutation presenting as slowly progressive predominant upper motor neuron amyotrophic lateral sclerosis. Neurol Sci 30(6):517–520

    Article  PubMed  Google Scholar 

  22. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chiò A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O; Chromosome 9-ALS/FTD Consortium.; French research network on FTLD/FTLD/ALS.; ITALSGEN Consortium., Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330

  23. Snowden JS, Harris J, Richardson A, Rollinson S, Thompson JC, Neary D, Mann DM, Pickering-Brown S (2013) Frontotemporal dementia with amyotrophic lateral sclerosis: a clinical comparison of patients with and without repeat expansions in C9orf72. Amyotroph Lateral Scler Frontotemporal Degener 14:172–176

    Article  CAS  PubMed  Google Scholar 

  24. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J, Morrison KE, Green A, Acharya KR, Brown RH Jr, Hardiman O (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38(4):411–413

    Article  CAS  PubMed  Google Scholar 

  25. Gellera C, Colombrita C, Ticozzi N, Castellotti B, Bragato C, Ratti A, Taroni F, Silani V (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9(1):33–40

    Article  CAS  PubMed  Google Scholar 

  26. Millecamps S, Salachas F, Cazeneuve C, Gordon P, Bricka B, Camuzat A, Guillot-Noël L, Russaouen O, Bruneteau G, Pradat PF, Le Forestier N, Vandenberghe N, Danel-Brunaud V, Guy N, Thauvin-Robinet C, Lacomblez L, Couratier P, Hannequin D, Seilhean D, Le Ber I, Corcia P, Camu W, Brice A, Rouleau G, LeGuern E, Meininger V (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47(8):554–560

    Article  CAS  PubMed  Google Scholar 

  27. Chiò A, Calvo A, Moglia C, Ossola I, Brunetti M, Sbaiz L, Lai SL, Abramzon Y, Traynor BJ, Restagno G (2011) A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol Aging 32(3):553.e23–553.e26

  28. van Es MA, Diekstra FP, Veldink JH, Baas F, Bourque PR, Schelhaas HJ, Strengman E, Hennekam EA, Lindhout D, Ophoff RA, van den Berg LH (2009) A case of ALS-FTD in a large FALS pedigree with a K17I ANG mutation. Neurology 72(3):287–288

    Article  PubMed  Google Scholar 

  29. Pan L, Deng X, Ding D, Leng H, Zhu X, Wang Z (2015) Association between the Angiogenin (ANG) K17I variant and amyotrophic lateral sclerosis risk in Caucasian: a meta-analysis. Neurol Sci. 36(12):2163–2168

    Article  PubMed  Google Scholar 

  30. Vrabec K, Koritnik B, Leonardis L, Dolenc-Grošelj L, Zidar J, Smith B, Vance C, Shaw C, Rogelj B, Glavač D, Ravnik-Glavač M (2015) Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population. Neurobiol Aging 36(3):1601.e17–1601.e20

  31. Wheaton MW, Salamone AR, Mosnik DM, McDonald RO, Appel SH, Schmolck HI, Ringholz GM, Schulz PE (2007) Cognitive impairment in familial ALS. Neurology 69(14):1411–1417

    Article  CAS  PubMed  Google Scholar 

  32. Rakowicz WP, Hodges JR (1998) Dementia and aphasia in motor neuron disease: an underrecognised association? J Neurol Neurosurg Psychiatry 65(6):881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abrahams S, Leigh PN, Goldstein LH (2005) Cognitive change in ALS: a prospective study. Neurology 64(7):1222–1226

    Article  CAS  PubMed  Google Scholar 

  34. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6(11):994–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Marjanović.

Ethics declarations

Conflicts of interest

Author and co-authors have nothing to disclose.

Ethical standards

This study was approved by the Ethics Committee of the School of Medicine, University of Belgrade (Number 29/XI-6) and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjanović, I.V., Selak-Djokić, B., Perić, S. et al. Comparison of the clinical and cognitive features of genetically positive ALS patients from the largest tertiary center in Serbia. J Neurol 264, 1091–1098 (2017). https://doi.org/10.1007/s00415-017-8495-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8495-y

Keywords

Navigation