Skip to main content

Advertisement

Log in

Transcranial sonography in pantothenate kinase-associated neurodegeneration

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

An Erratum to this article was published on 11 January 2012

Abstract

After it was reported that increased tissue iron concentrations were associated with increased echogenicity of the substantia nigra (SN) obtained with transcranial sonography (TCS) in animal and postmortem studies, our goal was to use this method in a disorder characterized with iron accumulation in human brain tissue. Therefore, magnetic resonance imaging (MRI) and TCS were conducted in 5 unrelated patients with pantothenate kinase-associated neurodegeneration (PKAN), caused by PANK2 mutations. All patients had an eye of the tiger sign. Hypointense lesions on the T2-weighted MRI images were restricted to the globus pallidus (GP) and SN. TCS also revealed bilateral hyperechogenicity restricted to the LN and SN, with normal DTV values. Both TCS and MRI studies in PKAN patients are in accordance with the pathological findings that accumulation of iron, even in advanced cases, is restricted to the GP and SN, suggesting selective involvement of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinsonʼs disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    Article  PubMed  CAS  Google Scholar 

  2. Berg D, Siefker C, Becker G (2001) Echogenicity of the substantia nigra in Parkinsonʼs disease and its relation to clinical findings. J Neurol 248:684–689

    Article  PubMed  CAS  Google Scholar 

  3. Walter U, Wittstock M, Benecke R, Dressler D (2002) Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinsonʼs disease. J Neural Transm 109:191–196

    Article  PubMed  CAS  Google Scholar 

  4. Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1053

    Article  PubMed  Google Scholar 

  5. Skoloudík D, Walter U (2010) Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 90:7–34

    Article  PubMed  Google Scholar 

  6. Berg D, Becker G, Zeiler B et al (1999) Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 53:1026–1031

    Article  PubMed  CAS  Google Scholar 

  7. Berg D, Roggendorf W, Schroder U et al (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005

    Article  PubMed  Google Scholar 

  8. Hochstrasser H, Bauer P, Walter U et al (2004) Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63:1912–1917

    Article  PubMed  CAS  Google Scholar 

  9. Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Disturbance of iron metabolism in Parkinsonʼs disease—ultrasonography as a biomarker. Neurotoxic Res 9:1–13

    Article  CAS  Google Scholar 

  10. Berg D, Godau J, Riederer P, Gerlach M, Arzbetrger T (2010) Microglia activation is related to substantia nigra echogenicity. J Neural Transm 117:1287–1292

    Article  PubMed  CAS  Google Scholar 

  11. Hayflick SJ, Westaway SK, Levinson B et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    Article  PubMed  CAS  Google Scholar 

  12. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349

    Article  PubMed  CAS  Google Scholar 

  13. Hartig MB, Hortnagel K, Garavaglia B et al (2006) Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 59:248–256

    Article  PubMed  CAS  Google Scholar 

  14. Mijajlović M, Petrović I, Stojković T, Svetel M, Stefanova E, Kostić VS (2008) Transcranial parenchymal sonography in Parkinson’s disease. Vojnosanit Pregl 65:601–605

    Article  PubMed  Google Scholar 

  15. Huber H (2010) Transcranial sonography–anatomy. Int Rev Neurobiol 90:35–45

    Article  PubMed  Google Scholar 

  16. Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43:286–296

    PubMed  CAS  Google Scholar 

  17. Berg D, Grote C, Rausch WD et al (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904

    Article  PubMed  CAS  Google Scholar 

  18. Zecca L, Berg D, Arzberger T et al (2005) In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 20:1278–1285

    Article  PubMed  Google Scholar 

  19. Spatz H (1922) Uber des Eisenmachweiss im Gehirn besonders in Zentren des extra-pyramidalmotorischen Systems. Z Gesamte Neurol Psychiatr 77:261

    Article  CAS  Google Scholar 

  20. Swaiman KF (1991) Hallervorden-Spatz syndrome and iron brain metabolism. Arch Neurol 48:1285–1293

    Article  PubMed  CAS  Google Scholar 

  21. Schneider SA, Hardy J, Bhatia KP (2009) Iron accumulation in syndromes of neurodegeneration with brain iron accumulation 1 and 2: causative or consequential? J Neurol Neurosurg Psychiatry 80:589–590

    Article  PubMed  CAS  Google Scholar 

  22. Koeppen AH, Dickson AC (2001) Iron in the Hallervorden-Spatz syndrome. Pediatr Neurol 25:148–155

    Article  PubMed  CAS  Google Scholar 

  23. Mutoh K, Okuno T, Ito M et al (1988) MR imaging of a group I case of Hallervorden-Spatz disease. J Comput Assist Tomogr 12:851–853

    Article  PubMed  CAS  Google Scholar 

  24. Sethi KD, Adams RJ, Loring DW, Gammal T (1988) Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 24:692–694

    Article  PubMed  CAS  Google Scholar 

  25. McNeill A, Birchall D, Hayflick SJ et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619

    Article  PubMed  CAS  Google Scholar 

  26. Lee JH, Kim DS, Baik SK, Nam SO (2010) Nigropallidal iron accumulation in pantothenate kinase-associated neurodegeneration demonstrated by susceptibility-weighted imaging. J Neurol 257:661–662

    Article  PubMed  Google Scholar 

  27. Hayflick SJ, Penzien JM, Michi W, Sharif UM, Rosman NP, Wheeler PG (2001) Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol 25:166–169

    Article  PubMed  CAS  Google Scholar 

  28. Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H (2006) Brain MRI in Neurodegeneration with brain iron accumulation with and without PANK2 mutations. Am J Neuroradiol 27:1230–1233

    PubMed  CAS  Google Scholar 

  29. Bruggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: effect of ATP13A2 mutations on the clinical and neuroimaging data. Arch Neurol 67:1357–1363

    Article  PubMed  Google Scholar 

  30. Liman J, Wellmer A, Rostasy K, Bahr M, Kermer P (2011) Transcranial ultrasound in neurodegeneration with brain iron accumulation (NBIA). Eur J Paediatr Neurol. doi:10.1016/ejpn.2011.07.009

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Science and Technology, Republic of Serbia (project no. 175090). VSK had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Kostić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostić, V.S., Svetel, M., Mijajlović, M. et al. Transcranial sonography in pantothenate kinase-associated neurodegeneration. J Neurol 259, 959–964 (2012). https://doi.org/10.1007/s00415-011-6294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6294-4

Keywords

Navigation