Skip to main content
Log in

Relationships between gray matter metabolic abnormalities and white matter inflammation in patients at the very early stage of MS

A MRSI study

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopic imaging (1H-MRSI) was used to study metabolic abnormalities inside the gray matter (GM) during or distant to white matter (WM) inflammatory processes reflected by T1 gadolinium-enhancing lesions in patients at the very early stage of multiple sclerosis (MS). The spectroscopic examination was performed in the axial plane using a home-designed acquisition-weighted, hamming shape, 2D-SE pulse sequence (TE = 135 ms; TR = 1,600 ms). Bilateral thalami and the medial occipital cortex were explored in 35 patients (15 with and 20 without T1-Gd enhancing lesions) with clinically isolated syndrome suggestive of MS and in 30 controls. The mean duration since the first presenting symptom was 9.1 (±6.7) months. The two groups of patients (with or without T1 Gd-enhancing lesions) did not differ in terms of time elapsed since the first clinical onset and T2 lesion load. The spatial contamination of surrounding WM tissues was obtained in each GM region by determining the tissue component in the ROI from GM and WM probability maps smoothed with the point spread function of the MRSI acquisition. Contribution of WM signal was important (60%) inside thalami while the region centered on the medial occipital cortex was well representative of GM metabolism (>70%). Comparisons of relative metabolite levels (ratios of each metabolite over the sum of all metabolites) between all patients and controls showed significant decrease in relative N-acetyl aspartate (NAA) levels, increase in relative choline-containing compounds (Cho) levels and no change in relative creatine/phosphocreatine levels inside the three ROIs. Decrease in relative NAA levels and increase in relative Cho levels were found in patients with inflammatory activity, while no metabolic alterations were present in patients without T1 Gd-enhancing lesions. These results suggest that abnormalities in GM metabolism observed in patients at the very early stage of MS are mainly related to neuronal dysfunction occurring during acute inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    PubMed  Google Scholar 

  2. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26

    Article  PubMed  Google Scholar 

  3. Lumsden C (1970) The neuropathology of multiple sclerosis, In: Vinken P, Bruyn G, (eds). Handbook of clinical neurology. Amsterdam: North Holland Publishing 9:217–309

    Google Scholar 

  4. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  CAS  PubMed  Google Scholar 

  5. Bozzali M, Cercignani M, Sormani MP, Comi G, Filippi M (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 23:985–988

    PubMed  Google Scholar 

  6. Dehmeshki J, Chard DT, Leary SM, Watt HC, Silver NC, Tofts PS, Thompson AJ, Miller DH (2003) The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 250:67–74

    Article  CAS  PubMed  Google Scholar 

  7. Rovaris M, Bozzali B, Iannucci G, Ghezzi A, Caputo D, Montanari E, Bertolotto A, Bergamaschi R, Capra R, Mancardi GL, Martinelli V, Comi G, Filippi M (2002) Assessment of normal- appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch Neurol 59:1406–1412

    Article  PubMed  Google Scholar 

  8. Traboulsee A, Dehmeshki J, Brex PA, Dalton CM, Chard D, Barker GJ, Plant GT, Miller DH (2002) Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 59:126–128

    CAS  PubMed  Google Scholar 

  9. Ge Y, Grossman R, Udupa JK, Babb JS, Kolson DL, McGowan JC (2001) Magnetization transfer ratio histogram analysis of gray matter in relapsingremitting multiple sclerosis. AJNR Am J Neuroradiol 22:470–475

    CAS  PubMed  Google Scholar 

  10. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M (2001) Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317

    Article  CAS  PubMed  Google Scholar 

  11. Davies GR, Ramio-Torrenta L, Hadjiprocopis A, Chard DT, Griffin CM, Rashid W, Barker GJ, Kapoor R, Thompson AJ, Miller DH (2004) Evidence for grey matter MTR abnormality in minimally disabled patients with early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 75:998–1002

    Article  CAS  PubMed  Google Scholar 

  12. De Stefano N, Matthews P, Filippi M, Agosta F, De Luca M, Bartolozzi M, Guidi L, Ghezzi A, Montanari E, Cifelli A, Federico A, Smith SM (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60:1157–1162

    CAS  PubMed  Google Scholar 

  13. Chard DT, Griffin CM, McLean MA, Kapeller P, Kapoor RT, AJ, Miller DH (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing- remitting multiple sclerosis. Brain 125:2342–2352

    Article  CAS  PubMed  Google Scholar 

  14. Chard DT, Griffin CM, Barker GJ, Kapoor R, Thompson AJ, Miller DH (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125:327–337

    Article  CAS  PubMed  Google Scholar 

  15. Griffin CM, Dehmeshki J, Chard DT, Parker GJ, Barker GJ, Thompson AJ, Miller DH (2002) T1 histograms of normal-appearing brain tissue are abnormal in early relapsing-remitting multiple sclerosis. Mult Scler 8:211–216

    Article  CAS  PubMed  Google Scholar 

  16. Iannucci G, Tortorella C, Rovaris M, Sormani MP, Comi G, Filippi M (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 21:1034–1038

    CAS  PubMed  Google Scholar 

  17. Audoin B, Ranjeva JP, Au Duong MV, Ibarrola D, Malikova I, Confort-Gouny S, Soulier E, Viout P, Ali-Cherif A, Pelletier J, Cozzone PJ (2004) Voxelbased analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis. J Magn Reson Imaging 20:765–771

    Article  PubMed  Google Scholar 

  18. Kapeller P, McLean MA, Griffin CM, Chard D, Parker GJ, Barker GJ, Thompson AJ, Miller DH (2001) Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study. J Neurol 248:131–138

    Article  CAS  PubMed  Google Scholar 

  19. Sharma R, Narayana PA, Wolinsky JS (2001) Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 7:221–226

    CAS  PubMed  Google Scholar 

  20. Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP, Chiarini P, Gallai V (2002) Localized (1)H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol 249:902–910

    Article  CAS  PubMed  Google Scholar 

  21. Adalsteinsson E, Langer-Gould A, Homer RJ, Rao A, Sullivan EV, Lima CA, Pfefferbaum A, Atlas SW (2003) Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 24:1941–1945

    PubMed  Google Scholar 

  22. Galanaud D, Le Fur Y, Nicoli F, Denis B, Confort-Gouny S, Ranjeva JP, Viout P, Pelletier J, Cozzone PJ (2001) Regional metabolite levels of the normal posterior fossa studied by proton chemical shift imaging. Magma 13:127–133

    Article  CAS  PubMed  Google Scholar 

  23. Nicoli F, Lefur Y, Denis B, Ranjeva JP, Confort-Gouny S, Cozzone PJ (2003) Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study. Stroke 34:e82–e87

    Article  CAS  PubMed  Google Scholar 

  24. Ranjeva JP, Pelletier J, Confort-Gouny S, Ibarrola D, Audoin B, Le Fur Y, Viout P, Cherif AA, Cozzone PJ (2003) MRI/MRS of corpus callosum in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 9:554–565

    Article  CAS  PubMed  Google Scholar 

  25. Matson GB (1994) An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients. Magn Reson Imaging 12:1205–1225

    Article  CAS  PubMed  Google Scholar 

  26. von Kienlin M, Ziegler A, Le Fur Y, Rubin C, Decorps M, Remy C (2000) 2D-spatial/2D-spectral spectroscopic imaging of intracerebral gliomas in rat brain. Magn Reson Med 43:211–219

    Article  CAS  PubMed  Google Scholar 

  27. Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  CAS  PubMed  Google Scholar 

  28. Guye M, Le Fur Y, Confort-Gouny S, Ranjeva JP, Bartolomei F, Regis J, Raybaud CA, Chauvel P, Cozzone PJ (2002) Metabolic and electrophysiological alterations in subtypes of temporal lobe epilepsy: a combined proton magnetic resonance spectroscopic imaging and depth electrodes study. Epilepsia 43:1197–1209

    Article  PubMed  Google Scholar 

  29. Galanaud D, Chinot O, Nicoli F, Confort-Gouny S, Le Fur Y, Barrie-Attarian M, Ranjeva JP, Fuentes S, Viout P, Figarella-Branger D, Cozzone PJ (2003) Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg 98:269–276

    Article  PubMed  Google Scholar 

  30. Viola A, Nicoli F, Denis B, Confort-Gouny S, Le Fur Y, Ranjeva JP, Viout P, Cozzone PJ (2004) High cerebral scyllo-inositol: a new marker of brain metabolism disturbances induced by chronic alcoholism. Magma 17:47–61

    Article  CAS  PubMed  Google Scholar 

  31. Cabanes E, Confort-Gouny S, Le Fur Y, Simond G, Cozzone PJ (2001) Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J Magn Reson 150:116–125

    Article  CAS  PubMed  Google Scholar 

  32. Weber-Fahr W, Ende G, Braus DF, Bachert P, Soher BJ, Henn FA, Buchel C (2002) A fully automated method for tissue segmentation and CSF-correction of proton MRSI metabolites corroborates abnormal hippocampal NAA in schizophrenia. Neuroimage 16:49–60

    Article  CAS  PubMed  Google Scholar 

  33. Ranjeva JP, Audoin B, Au Duong MV, Ibarrola D, Confort-Gouny S, Malikova I, Soulier E, Viout P, Ali-Cherif A, Pelletier J, Cozzone P (2005) Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis. AJNR Am J Neuroradiol 26:119–127

    PubMed  Google Scholar 

  34. Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR (2000) Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 11:586–595

    Article  CAS  PubMed  Google Scholar 

  35. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56:407–415

    Article  PubMed  Google Scholar 

  36. van Waesberghe JH, Barkhof F (1999) Magnetization transfer imaging of the spinal cord and the optic nerve in patients with multiple sclerosis. Neurology 53:S46–S48

    CAS  PubMed  Google Scholar 

  37. Brex PA, Gomez-Anson B, Parker GJ, Molyneux PD, Miszkiel KA, Barker GJ, MacManus DG, Davie CA, Plant GT, Miller DH (1999) Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Sci 166:16–22

    Article  CAS  PubMed  Google Scholar 

  38. Fernando KT, McLean MA, Chard DT, MacManus DG, Dalton CM, Miszkiel KA, Gordon RM, Plant GT, Thompson AJ, Miller DH (2004) Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 127:1361–1369

    Article  CAS  PubMed  Google Scholar 

  39. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, Martinelli V, Grossman RI, Scotti G, Comi G, Falini A (2003) Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 126:433–437

    Article  CAS  PubMed  Google Scholar 

  40. De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, Arnold DL (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939

    Article  PubMed  Google Scholar 

  41. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58

    Article  PubMed  Google Scholar 

  42. Arnold DL, Matthews PM, Francis GS, O’Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  CAS  PubMed  Google Scholar 

  43. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL (1995) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  CAS  PubMed  Google Scholar 

  44. Narayana PA, Doyle TJ, Lai D, Wolinsky JS (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    Article  CAS  PubMed  Google Scholar 

  45. Knowlton RC, Abou-Khalil B, Sawrie SM, Martin RC, Faught RE, Kuzniecky RI (2002) In vivo hippocampal metabolic dysfunction in human temporal lobe epilepsy. Arch Neurol 59:1882–1886

    Article  PubMed  Google Scholar 

  46. Knowlton RC (2004) Multimodality imaging in partial epilepsies. Curr Opin Neurol 17:165–172

    Article  PubMed  Google Scholar 

  47. Petroff OA, Errante LD, Kim JH, Spencer DD (2003) N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 60:1646–1651

    Article  CAS  PubMed  Google Scholar 

  48. Vielhaber S, Kudin AP, Kudina TA, Stiller D, Scheich H, Schoenfeld A, Feistner H, Heinze HJ, Elger CE, Kunz WS (2003) Hippocampal N-acetyl aspartate levels do not mirror neuronal cell densities in creatine-supplemented epileptic rats. Eur J Neurosci 18:2292–2300

    Article  PubMed  Google Scholar 

  49. Narayanan S, De Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, Pelletier D, Arnason BGW, Antel JP, Arnold DL (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986

    Article  CAS  PubMed  Google Scholar 

  50. Mader I, Roser W, Kappos L, Hagberg G, Seelig J, Radue EW, Steinbrich W (2000) Serial proton MR spectroscopy of contrast-enhancing multiple sclerosis plaques: absolute metabolic values over 2 years during a clinical pharmacological study. AJNR Am J Neuroradiol 21:1220–1227

    CAS  PubMed  Google Scholar 

  51. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    Article  CAS  PubMed  Google Scholar 

  52. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84

    Article  CAS  PubMed  Google Scholar 

  53. Suhy J, Rooney WD, Goodkin DE, Capizzano AA, Soher BJ, Maudsley AA, Waubant E, Andersson PB, Weiner MW (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsingremitting MS. Mult Scler 6:148–155

    CAS  PubMed  Google Scholar 

  54. Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266

    Article  CAS  PubMed  Google Scholar 

  55. Kapeller P, Brex PA, Chard D, Dalton C, Griffin CM, McLean MA, Parker GJ, Thompson AJ, Miller DH (2002) Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 8:207–210

    Article  CAS  PubMed  Google Scholar 

  56. Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935

    Article  CAS  PubMed  Google Scholar 

  57. Ross AJ, Sachdev PS (2004) Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev 44:83–102

    Article  CAS  PubMed  Google Scholar 

  58. Brenner RE, Munro PM, Williams SC, Bell JD, Barker GJ, Hawkins CP, Landon DN, McDonald WI (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737–745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Ranjeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Au Duong, M., Audoin, B., Le Fur, Y. et al. Relationships between gray matter metabolic abnormalities and white matter inflammation in patients at the very early stage of MS. J Neurol 254, 914–923 (2007). https://doi.org/10.1007/s00415-006-0474-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0474-7

Key words

Navigation