Skip to main content
Log in

Sex estimation of skeletons in middle and late adulthood: reliability of pelvic morphological traits and long bone metrics on an Italian skeletal collection

  • Population Data
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

There are several metric and morphological methods available for sex estimation of skeletal remains, but their reliability and applicability depend on the sexual dimorphism of the remains as well as on the availability of preserved bones. Some studies showed that age-related changes on bones can cause misclassification of sex. The purpose of this study was to establish the reliability of pelvic morphological traits and metric methods of sex estimation on relatively old individuals from a modern Italian skeletal collection. The data for this study were obtained from 164 individuals of the Milano CAL skeletal collection and average age of the samples was 75 years. In the pelvic morphological method, the recalibrated regression formula of Klales and colleagues (2012), pre-auricular sulcus, and greater sciatic notch morphology were used for sex estimation. With regard to the metric method, 15 standard measurements from upper and lower limbs were analyzed for sexual dimorphism. The results showed that in pelvic morphological approach, the application of regression formula of the revised Klales and colleague formula (2017) resulted in 100% accuracy. Classification rates of metric methods vary from 75.19 to 90.73% with the maximum epiphyseal breadth of proximal tibia representing the most discriminant parameter. This study confirms that the effect of age on sex estimation methods is not substantial, and both metric and morphological methods of sex estimation can be reliably applied to individuals of Italian descent in middle and late adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González PN, Bernal V, Perez SI, Barrientos G (2007) Analysis of dimorphic structures of the human pelvis its implications for sex estimation in samples without reference collections. J Archaeol Sci 34:1720–1730. https://doi.org/10.1016/j.jas.2006.12.013

    Article  Google Scholar 

  2. Tomczyk J, Nieczuja-Dwojacka J, Zalewska M, Niemiro W, Olczyk W (2017) Sex estimation of upper long bones by selected measurements in a Radom (Poland) population from the 18th and 19th centuries AD. Anthropol Rev 80(3):287–300. https://doi.org/10.1515/anre-2017-0019

    Article  Google Scholar 

  3. Iscan MY, Steyn M (2013) The human skeleton in forensic medicine. Charles C. Thomas, Springfield

    Google Scholar 

  4. Phenice TW (1969) A newly developed visual method for sexing the os pubis. Am J Phys Anthropol 30:297–302. https://doi.org/10.1002/ajpa.1330300214

    Article  CAS  PubMed  Google Scholar 

  5. Volk C, Ubelaker DH (2002) A test of the Phenice method for the estimation of sex. J Forensic Sci 47:19–24. https://doi.org/10.1520/jfs15200j

    Article  PubMed  Google Scholar 

  6. Bruzek J, Murail P (2006) Methodology and reliability of sex determination from the skeleton. In: Schmitt A, Cuhna E, Pinheiro J (eds) Forensic anthropology and medicine, complementary sciences from recovery to cause of death. Humana Press, Totowa, pp 225–242

    Google Scholar 

  7. Kelley MA (1978) Phenice’s visual technique for the os pubis: a critique. Am J Phys Anthropol 48:121–122. https://doi.org/10.1002/ajpa.1330480118

    Article  CAS  PubMed  Google Scholar 

  8. Klales AR, Ousley SD, Vollner JM (2012) A revised method of sexing the human innominate using Phenice's nonmetric traits and statistical methods. Am J Phys Anthropol 149(1):104–114. https://doi.org/10.1002/ajpa.22102

    Article  PubMed  Google Scholar 

  9. Brickley M (2004) Determination of sex from archaeological skeletal material and assessment of parturition. Standards for recording human remains. BABAO, Southampton 23-25

  10. Kenyhercz MW, Klales AR, Stull KE, McCormick A, Cole SJ (2017) Worldwide population variation in pelvic sexual dimorphism: a validation and recalibration of the Klales et al. method. Forensic Sci Int 277:259–2e1. https://doi.org/10.1016/j.forsciint.2017.05.001

    Article  PubMed  Google Scholar 

  11. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Fayetteville, AR: Arkansas Archeological Survey Research Series No. 44

  12. Byers SA (2011) Introduction to forensic anthropology. Routledge, New York

    Google Scholar 

  13. Houghton P (1974) The relationship of the preauricular groove of the ilium to pregnancy. Am J Phys Anthropol 41:381–389. https://doi.org/10.1002/ajpa.1330410305

    Article  CAS  PubMed  Google Scholar 

  14. Cox M, Scott A (1992) Evaluation of the obstetric signatures of some pelvic characters in an 18th century British sample of known parity status. Am J Phys Anthropol 89:431–440. https://doi.org/10.1002/ajpa.1330890404

    Article  CAS  PubMed  Google Scholar 

  15. Hoshi H (1961) On the preauricular groove in the Japanese pelvis with special reference to the sex difference. Okajimas Folia Anat Jpn 37(3):259–269. https://doi.org/10.2535/ofaj1936.37.3_259

    Article  CAS  PubMed  Google Scholar 

  16. Novak L, Schultz JJ, McIntyre M (2012) Determining sex of the posterior ilium from the Robert J. Terry and William M. Bass collections. J Forensic Sci 57(5):1155–1160. https://doi.org/10.1111/j.1556-4029.2012.02122.x

    Article  PubMed  Google Scholar 

  17. Karsten JK (2018) A test of the preauricular sulcus as an indicator of sex. Am J Phys Anthropol 165(3):604–608. https://doi.org/10.1002/ajpa.23372

    Article  PubMed  Google Scholar 

  18. Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168. https://doi.org/10.1002/ajpa.10012

    Article  PubMed  Google Scholar 

  19. Singh S, Potturi BR (1978) Greater sciatic notch in sex determination. J Anat 125:619–624

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker PL (2005) Greater sciatic notch morphology: sex, age, and population differences. Am J Phys Anthropol 127(4):385–391. https://doi.org/10.1002/ajpa.10422

    Article  PubMed  Google Scholar 

  21. İşcan MY, Miller-Shaivitz P (1984) Discriminant function sexing of the tibia. J Forensic Sci 29(4):1087–1093. https://doi.org/10.1520/jfs11775j

    Article  PubMed  Google Scholar 

  22. İşcan MY, Yoshino M, Kato S (1994) Sex determination from the tibia: standards for contemporary Japan. J Forensic Sci 39(3):785–792. https://doi.org/10.1520/jfs13656j

    Article  PubMed  Google Scholar 

  23. Ubelaker DH (1989) Human skeletal remains. Taraxacum, Washington

    Google Scholar 

  24. Dibennardo R, Taylor JV (1982) Classification and misclassification in sexing the black femur by discriminant function analysis. Am J Phys Anthropol 58(2):145–151. https://doi.org/10.1002/ajpa.1330580206

    Article  CAS  PubMed  Google Scholar 

  25. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296. https://doi.org/10.1111/j.1556-4029.2010.01635.x

    Article  PubMed  Google Scholar 

  26. Adams BJ, Byrd JE (2002) Interobserver variation of selected postcranial skeletal measurements. J Forensic Sci 47(6):1193–1202. https://doi.org/10.1520/jfs15550j

    Article  PubMed  Google Scholar 

  27. Steyn M, İşcan MY (1997) Sex determination from the femur and tibia in South African whites. Forensic Sci Int 90(1–2):111–119. https://doi.org/10.1016/s0379-0738(97)00156-4

    Article  CAS  PubMed  Google Scholar 

  28. Burns KR (2012) Forensic anthropology training manual, 3rd edn. Pearson, Upper Saddle River, New Jersey

  29. Stini WA (1985) Growth rates and sexual dimorphism in evolutionary perspective. In: Gilbert RI, Mielke JH (eds) The analysis of prehistoric diets. Academic, Orlando, pp 191–226

    Google Scholar 

  30. Seeman E (2001) Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86(10):4576–4584. https://doi.org/10.1210/jc.86.10.4576

    Article  CAS  PubMed  Google Scholar 

  31. Duan Y, Turner CH, Kim B-T, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16(12):2267–2275. https://doi.org/10.1359/jbmr.2001.16.12.2267

    Article  CAS  PubMed  Google Scholar 

  32. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  CAS  PubMed  Google Scholar 

  33. Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16(12):2276–2283. https://doi.org/10.1359/jbmr.2001.16.12.2276

    Article  CAS  PubMed  Google Scholar 

  34. Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165–1e1. https://doi.org/10.1016/j.forsciint.2016.02.007

    Article  PubMed  Google Scholar 

  35. Kemkes-Grottenthaler A (2005) Sex determination by discriminant analysis: an evaluation of the reliability of patella measurements. Forensic Sci Int 147(2–3):129–133. https://doi.org/10.1016/j.forsciint.2004.09.075

    Article  PubMed  Google Scholar 

  36. Dabbs GR, Moore-Jansen PH (2010) A method for estimating sex using metric analysis of the scapula. J Forensic Sci 55(1):149–152. https://doi.org/10.1111/j.1556-4029.2009.01232.x

    Article  PubMed  Google Scholar 

  37. Lovell NC (1989) Test of Phenice's technique for determining sex from the os pubis. Am J Phys Anthropol 79(1):117–120. https://doi.org/10.1002/ajpa.1330790112

    Article  CAS  PubMed  Google Scholar 

  38. Kranioti EF, Apostol MA (2015) Sexual dimorphism of the tibia in contemporary Greeks, Italians, and Spanish: forensic implications. Int J Legal Med 129(2):357–363. https://doi.org/10.1007/s00414-014-1045-6

    Article  PubMed  Google Scholar 

  39. Kranioti EK, García-Donas JG, Prado PA, Kyriakou XP, Langstaff HC (2017) Sexual dimorphism of the tibia in contemporary Greek-Cypriots and Cretans: forensic applications. Forensic Sci Int 271:129–1e1. https://doi.org/10.1016/j.forsciint.2016.11.018

    Article  PubMed  Google Scholar 

  40. Mall G, Hubig M, Büttner A, Kuznik J, Penning R, Graw M (2001) Sex determination and estimation of stature from the long bones of the arm. Forensic Sci Int 117(1–2):23–30. https://doi.org/10.1016/s0379-0738(00)00445-x

    Article  CAS  PubMed  Google Scholar 

  41. Alunni-Perret V, Staccini P, Quatrehomme G (2008) Sex determination from the distal part of the femur in a French contemporary population. Forensic Sci Int 175(2–3):113–117. https://doi.org/10.1016/j.forsciint.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  42. du Jardin P, Ponsaillé J, Alunni-Perret V, Quatrehomme G (2009) A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Sci Int 192(1–3):127–1e1. https://doi.org/10.1016/j.forsciint.2009.07.014

    Article  PubMed  Google Scholar 

  43. Krui I, Jerkovi I, Anelinovi D (2017) Sex estimation standards for medieval and contemporary Croats. Croat Med J 58(3):222–230. https://doi.org/10.3325/cmj.2017.58.222

    Article  Google Scholar 

  44. Bašić Ž, Anterić I, Vilović K, Petaros A, Bosnar A, Madžar T, Anđelinović Š (2013) Sex determination in skeletal remains from the medieval Eastern Adriatic coast–discriminant function analysis of humeri. Croat Med J 54(3):272–278. https://doi.org/10.3325/cmj.2013.54.272

    Article  PubMed  PubMed Central  Google Scholar 

  45. MacLaughlin SM, Bruce MF (1985) A simple univariate technique for determining sex from fragmentary femora: its application to a Scottish short cist population. Am J Phys Anthropol 67(4):413–417. https://doi.org/10.1002/ajpa.1330670413

    Article  CAS  PubMed  Google Scholar 

  46. Cattaneo C, Mazzarelli D, Cappella A, Castoldi E, Mattia M, Poppa P, De Angelis D, Vitello A, Biehler-Gomez L (2018) A modern documented Italian identified skeletal collection of 2127 skeletons: the CAL Milano Cemetery Skeletal Collection. Forensic Sci Int 287:219.e1–219.e5. https://doi.org/10.1016/j.forsciint.2018.03.041

    Article  Google Scholar 

  47. DPR 10.09.90 n° 285, art. 43 http://presidenza.governo.it/USRI/ufficio_studi/normativa/D.P.R./2010/20settembre/201990,/20n./20285.pdf. Accessed November 2019

  48. Barnes J, Wescott DJ (2008) Sex determination of Mississippian skeletal remains from human measurements. Missouri Archaeol 68:133–137

    Google Scholar 

  49. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  50. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gómez-Valdés JA, Garmendia AM, García-Barzola L, Sánchez-Mejorada G, Karam C, Baraybar JP, Klales AR (2017) Recalibration of the Klales et al. (2012) method of sexing the human innominate for Mexican populations. Am J Phys Anthropol 162(3):600–604. https://doi.org/10.1002/ajpa.23157

    Article  PubMed  Google Scholar 

  52. Telmon N, Rougé D, Brugne JF, Sevin A, Larrouy G, Arbus L (1993) Critères ostéoscopiques d'exploration du vieillissement. L'exemple de la nécropole médiévale de Saint-Étienne de Toulouse. Bull Mém Soc Anthropol Paris 5(1):293–300. https://doi.org/10.3406/bmsap.1993.2358

    Article  Google Scholar 

  53. Waldron T (1987) The relative survival of the human skeleton: implications for paleopathology. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction. Manchester University Press, Manchester, pp 55–64

    Google Scholar 

  54. Steyn M, Pretorius E, Hutten L (2004) Geometric morphometric analysis of the greater sciatic notch in South Africans. Homo 54(3):197–206. https://doi.org/10.1078/0018-442x-00076

    Article  CAS  PubMed  Google Scholar 

  55. Kemkes-Grottenthaler A, Löbig F, Stock F (2002) Mandibular ramus flexure and gonial eversion as morphologic indicators of sex. Homo 53(2):97–111. https://doi.org/10.1078/0018-442x-00039

    Article  CAS  PubMed  Google Scholar 

  56. Konigsberg LW, Hens SM (1998) Use of ordinal categorical variables in skeletal assessment of sex from the cranium. Am J Phys Anthropol 107:97e112. https://doi.org/10.1002/(sici)1096-8644(199809)107:1<97::aid-ajpa8>3.3.co;2-s

    Article  Google Scholar 

  57. Walker L (2008) Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol 136(1):39–50. https://doi.org/10.1002/ajpa.20776

    Article  PubMed  Google Scholar 

  58. Walrath DE, Turner P, Bruzek J (2004) Reliability test of the visual assessment of cranial traits for sex determination. Am J Phys Anthropol 125(2):132–137. https://doi.org/10.1002/ajpa.10373

    Article  PubMed  Google Scholar 

  59. İşcan MY, Shihai D (1995) Sexual dimorphism in the Chinese femur. Forensic Sci Int 74(1–2):79–87. https://doi.org/10.1016/0379-0738(95)01691-B

    Article  PubMed  Google Scholar 

  60. DiBennardo R, Taylor JV (1979) Sex assessment of the femur: a test of a new method. Am J Phys Anthropol 50(4):635–637. https://doi.org/10.1002/ajpa.1330500415

    Article  CAS  PubMed  Google Scholar 

  61. Moore MK, DiGangi EA, Ruíz FPN, Davila OJH, Medina CS (2016) Metric sex estimation from the postcranial skeleton for the Colombian population. Forensic Sci Int 262:286–2e1. https://doi.org/10.1016/j.forsciint.2016.02.018

    Article  PubMed  Google Scholar 

  62. Frutos LR (2005) Metric determination of sex from the humerus in a Guatemalan forensic sample. Forensic Sci Int 147(2–3):153–157. https://doi.org/10.1016/j.forsciint.2004.09.077

    Article  Google Scholar 

  63. Berrizbeitia EL (1989) Sex determination with the head of the radius. J Forensic Sci 34(5):1206–1213. https://doi.org/10.1520/jfs12754j

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranavan Selliah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selliah, P., Martino, F., Cummaudo, M. et al. Sex estimation of skeletons in middle and late adulthood: reliability of pelvic morphological traits and long bone metrics on an Italian skeletal collection. Int J Legal Med 134, 1683–1690 (2020). https://doi.org/10.1007/s00414-020-02292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02292-2

Keywords

Navigation