Skip to main content
Log in

Developmental validation of the HomyGene19+14Y System

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The HomyGene19+14Y System (HG19+14Y) is a PCR-based amplification kit that enables typing of 18 autosomal short tandem repeat (STR) loci (i.e., CSF1PO, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, Penta E, TPOX, TH01, vWA), 14 widely used Y chromosome STR (Y-STR) loci (Y_GATA_H4, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS438, DYS439, DYS456, DYS458, DYS635), and amelogenin. This multiplex system was designed for the simultaneous analysis of amelogenin-Y allele mutation, single-source searches, kinship (including familial searching), mixture profiles, international data sharing, and other forensic applications. In this study, the multiplex system was validated for sensitivity, specificity, DNA mixtures, stability, precision, stutter, reproducibility, parallel tests, PCR-based conditions, and population analysis according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) developmental validation guidelines. A total of 212 alleles were detected for the 18 autosomal STR loci among 528 Guangdong Han individuals, and 431 haplotypes were found for 14 Y-STRs among 452 unrelated males. The combined match probability (CMP) of the HG19+14Y System was calculated as 2.39 × 10−29. All the validation results showed that the HG19+14Y System would be a robust, reliable, highly polymorphic, and informative forensic kit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Budowle B (1997) Studies for selecting core STR loci for CODIS in presented at DNA forensics science, evidence, and future prospects. November 17–18, McLean, VA

  2. Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51:253–265

    Article  CAS  PubMed  Google Scholar 

  3. Jiang XH (2011) Role of technologies in national DNA database in China: past, present and future trends. Chin. J Forensic Med 26:383–386

    Google Scholar 

  4. Ensenberger MG, Lenz KA, Matthies LK, Hadinoto GM et al (2016) Developmental validation of the PowerPlex Fusion 6C System. Forensic Sci Int Genet 21:134–144

    Article  CAS  PubMed  Google Scholar 

  5. Wang DY, Gopinath S, Lagace RE, Norona W, Hennessy LK, Short ML, Mulero JJ (2015) Developmental validation of the GlobalFiler Express PCR Amplification Kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 19:148–155

    Article  CAS  PubMed  Google Scholar 

  6. Thompson JM, Ewing MM, Frank WE, Pogemiller JJ et al (2013) Developmental validation of the PowerPlex Y23 System: a single multiplex Y-STR analysis system for casework and database samples. Forensic Sci Int Genet 7:240–250

    Article  CAS  PubMed  Google Scholar 

  7. Gopinath S, Zhong C, Nguyen V, Ge JY, Lagace RE, Short ML, Mulero JJ (2016) Developmental validation of the Yfiler Plus PCR Ampli fication Kit: an enhanced Y-STR multiplex for casework and database applications. Forensic Sci Int Genet 24:164–175

    Article  CAS  PubMed  Google Scholar 

  8. Hares DR (2012) Expanding the CODIS core loci in the United States. Forensic Sci Int Genet 6(1):52–54

    Article  Google Scholar 

  9. Ge JY, Eisenberg A, Budowle B (2012) Developing criteria and data to determine best options for expanding the core CODIS loci. Invest Genet 3:1–48

    Article  Google Scholar 

  10. Gill P, Haned H, Bleka O, Hansson O, Dorum G, Egeland T (2015) Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches—twenty years of research and development. Forensic Sci Int Genet 18:100–117

    Article  CAS  PubMed  Google Scholar 

  11. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48(5):1054–1064

    Article  CAS  PubMed  Google Scholar 

  12. Ballantyne KN, Oorschot RA, Mitchell RJ (2007) Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Forensic Sci Int 166:35–41

    Article  CAS  PubMed  Google Scholar 

  13. Lopes V, Andrade L, Carvalho M, Serra A, Balsa F, Bento AM et al (2009) Mini-STRs a powerful tool to identify genetic profiles in samples with small amounts of DNA. Forensic Sci Int Genet 2:121–122

    Article  Google Scholar 

  14. Guo F, Zhou YS, Jiang XH et al (2016) Evaluation of the Early Access STR Kit v1 on the Ion Torrent PGM™ platform. Forensic Sci Int Genet 23:111–120

    Article  CAS  PubMed  Google Scholar 

  15. Martin PD, Schmitter H, Schneider PM (2001) A brief history of the formation of DNA databases in forensic science within Europe. Forensic Sci Int 119(2):225–231

    Article  CAS  PubMed  Google Scholar 

  16. Schneider PM (2009) Expansion of the European standard set of DNA database loci-the current situation. Profile in DNA 2009, 12(1): 6–7. At http://www.promega.com/profiles/1201/1201_06.html

  17. Hares DR (2011) Expanding the CODIS core loci in the United States. Forensic Sci Int Genet 6(1):52–54

    Article  Google Scholar 

  18. Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24:15

    CAS  PubMed  Google Scholar 

  19. Li SL, Liu C, Liu H, Ge JY, Budowle B, Liu CH, Zheng WG, Li FY, Ge BW (2014) Developmental validation of the EX20+4 system. Forensic Sci Int Genet 11:207–213

    Article  CAS  PubMed  Google Scholar 

  20. Shafique M, Shahzad MS, Rahman Z, Shan MA, Perveen R, Shahzad M, Hussain M, Shahid AA, Husnain T (2016) Development of new PCR multiplex system by the simultaneous detection of 10 miniSTRs, SE33, Penta E, Penta D, and four Y-STRs. Int J Legal Med. doi:10.1007/s00414-016-1372-x

    Google Scholar 

  21. Lopes V, Andrade L, Carvalho M, Serra A, Bals F, Bento AM, Batista L, Oliceira C, Corte-Real F, Anjos MJ (2009) Mini-STRs: a powerful tool to identify genetic profiles in samples with small amounts of DNA. Forensic Sci Int Genet Supp S2:121–122

    Article  Google Scholar 

  22. Tenpleton J, Ottens R, Paradiso V, Handt O, Taylor D, Linacre A (2013) Genetic profiling from challenging samples: direct PCR of touch DNA. Forensic Sci Int Genet Supp S4(1):224–225

    Article  Google Scholar 

  23. Zhao G, Zhai H, Yuan Q, Sun S, Liu T, Xie L (2014) Rapid and sensitive diagnosis of fungal keratitis with direct PCR without template DNA extraction. Clin Microbiol Infect 20(10):776–782

    Article  Google Scholar 

  24. Quality Assurance Standards (QAS) for DNA Databasing Laboratories. (2009). Available at: http://www.cstl.nist.gov/strbase/QAS/Final-FBI-Director-Databasing-Standards.pdf

  25. Revised validation guidelines-scientific working group on DNA analysis methods (SWGDAM), Forensic Sci. Commun. 6 (3) (2004), Available at: http://swgdam.org/SWGDAM_Validation_ Guidelines_ APPROVED_Dec_2012.pdf

  26. The implementation of voluntary certification of forensic science product rules—DNA kits, Available at: http://www.csp.gov.cn/UploadFiles/P-V03-005.pdf

  27. Walsh PS, Fildes NJ, Reynolds R (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 24:2807–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leclair B, Frégeau CJ, Bowen KL, Fourney RM (2004) Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. J Forensic Sci 49(5):968–980

    CAS  PubMed  Google Scholar 

  29. Tereba A (1999) Tools for analysis of population statistics. Profiles DNA 2(3):14–16

    Google Scholar 

  30. Lui K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129

    Article  Google Scholar 

  31. Weir BS (2007) Matching and partially-matching DNA profiles. Ann Appl Stal 1(2):358–370

    Article  Google Scholar 

  32. Ge JY, Chakraborly R, Eisenberg AJ, Budowle B (2011) Comparisons of familial DNA database searching strategied. J Forensic Sci 56(6):1448–1456

    Article  PubMed  Google Scholar 

  33. Ge JY, Budowle B, Chakraborly R (2011) Choosing relatives for DNA identification of missing persons. J Forensic Sci 56(s1):23–28

    Article  Google Scholar 

  34. Schneider PM (2007) Scientific standards for studies in forensic genetics. Forensic Sci Int 165(2–3):238–243

    Article  CAS  PubMed  Google Scholar 

  35. Magnuson VL, Ally DS, Nylund SJ, Karanjawala ZE, Rayman JB, Knapp JI, Lowe AL, Ghosh S, Collins FS (1996) Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. BioTechniques 21:700–709

    CAS  PubMed  Google Scholar 

  36. Liu QL, Chen YF, Huang XL, Liu KY, Zhao H, Lu DJ (2016) Population data and mutation rates of 19 STR loci in seven provinces from China based on Goldeneye™ DNA ID System 20A. Int J Legal Med Available at. doi:10.1007/s00414-016-1441-1

    Google Scholar 

  37. Wang Y, Liu C, Zhang CC, Li R, Liu H, Qu XL, Li HX, Sun HY (2016) Analysis of 24 Y-STR haplotype data in a Chinese Han population from Guangdong Province. Int J Legal Med 130(3):689–691

    Article  PubMed  Google Scholar 

  38. Tozzo P, Giuliodori A, Corato S, Ponzano E, Rodriguez D, Caenazzo L (2013) Deletion of Amelogenin Y-locus in forensics: literature revision and description of a novel method for sex confirmation. J Forensic Legal Med 20(5):387–391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Science and Technology Planning Project of Guangdong Province, China (Grant No. 2013B021500010), Natural Science Foundation of Guangdong Province (Grant No. 2014A030310025), and Medical Science and Technology Research Foundation of Guangdong Province (A2015043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Weian Du and Ling Chen contributed equally to this work

Electronic supplementary material

Table S1

The allele frequencies and forensic parameters of 18 autosomal STR loci in Guangdong Han population (n = 528) (DOCX 35 kb)

Table S2

The allele frequencies and GD values of 14 Y-STR loci in Guangdong Han male population (n = 452) (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Chen, L., Liu, H. et al. Developmental validation of the HomyGene19+14Y System. Int J Legal Med 131, 605–620 (2017). https://doi.org/10.1007/s00414-016-1505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1505-2

Keywords

Navigation