Skip to main content
Log in

Skeletal muscle proteins: a new approach to delimitate the time since death

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Purpose

Skeletal muscle tissue is proposed as a forensic model tissue with strong potential, as it is easily accessible and its true-to-life state structure and function is well known. Despite this strong potential, skeletal muscle degradation studies are rare. The aim of this study was to test if a skeletal muscle-based protein analysis is applicable to delimitate the time since death.

Methods

Under standard conditions, two pigs were stored either at 22 °C for 5 days or 4 °C for 21 days. Their Mm. biceps femori were sampled periodically for analyses of ten skeletal muscle proteins postmortem.

Results

All analyzed proteins can serve as markers for a delimitation of the time since death. Desmin, nebulin, titin, and SERCA 1 displayed distinct protein patterns at certain points of time. The other five proteins, α-actinin, calsequestrin-1, laminin, troponin T-C, and SERCA 2, showed no degradation patterns within the analyzed postmortem time frame.

Conclusions

Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brinkmann B, Madea B (2004) Handbuch gerichtliche Medizin. Springer, Germany

    Book  Google Scholar 

  2. Wehner F (2009) Die Eingrenzung der Leichenliegezeit im spätpostmortalen Intervall. Med Welt 6:1–6

    Google Scholar 

  3. Madea B, Musshoff F (2007) Postmortem biochemistry. Forensic Sci Int 165:165–171

    Article  CAS  PubMed  Google Scholar 

  4. Kang S, Kassam N, Gauthier ML, O’Day D (2003) Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci Int 131:140–147

    Article  CAS  PubMed  Google Scholar 

  5. Poloz YO, O’Day D (2009) Determining time of death: temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal Med 123:305–314

    Article  PubMed  Google Scholar 

  6. Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval—a pilot study. Legal Med 5:220–227

    Article  CAS  PubMed  Google Scholar 

  7. Yi SH, Zhao XH, Liu L (2008) Selection parameters to infer post-mortem interval by detecting DNA degradation using comet assay. Chin J Forensic Med 23:1–4

    CAS  Google Scholar 

  8. Kimura A, Ishida Y, Hayashi T, Nosaka M, Kondo T (2011) Estimating time of death based on the biological clock. Int J Legal Med 125:385–391

    Article  PubMed  Google Scholar 

  9. Koomaraie M, Geesink GH (2006) Contribution of post mortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74:34–43

    Article  Google Scholar 

  10. Goll DE, Thompson VF, Taylor RG, Christiansen JA (1992) Role of the calpain system in muscle growth. Biochimie 74:225–237

    Article  CAS  PubMed  Google Scholar 

  11. Taylor RG, Geesink GH, Thompson VF, Koomaraie M, Goll DE (1995) Is Z-disc degradation responsible for post-mortem tenderization? J Anim Sci 73:1351–1367

    CAS  PubMed  Google Scholar 

  12. Talor RG, Koomaraie M (1998) Effects of postmortem storage on the ultrastructure of the endomysium and myofibrils in normal and callipyge longissimus. J Anim Sci 76:2811–2817

    Google Scholar 

  13. Hopkins DL, Thompson JM (2002) The degradation of myofibrillar proteins in beef and lamb using denaturing electrophoresis—an overview. J Muscle Foods 13:81–102

    Article  Google Scholar 

  14. Lametsch R, Karlsson A, Rosenvold K, Andersen H, Roepstorff P, Bendixen E (2003) Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem 51:692–700

    Article  Google Scholar 

  15. Kemp CM, Sensky PL, Bardsley RC, Buttery PJ, Parr T (2010) Tenderness—an enzymatic view. Meat Sci 84:248–256

    Article  CAS  PubMed  Google Scholar 

  16. Baron CP, Jacobsen S, Purslow PP (2004) Cleavage of desmin by cysteine proteases: calpains and cathepsin B. Meat Sci 68:447–456

    Article  CAS  PubMed  Google Scholar 

  17. Bee G, Anderson AL, Lonergan SM, Huff-Lonergan E (2007) Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Sci 76:359–365

    Article  CAS  PubMed  Google Scholar 

  18. Huff-Lonergan E, Mitshuhasi T, Parrish FC Jr, Robson RM (1996) Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J Anim Sci 74:993–1008

    CAS  PubMed  Google Scholar 

  19. Geesink GH, Koomaraie M (1999) Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. J Anim Sci 77:1490–1501

    CAS  PubMed  Google Scholar 

  20. Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E (2004) Early post mortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J Anim Sci 82:1195–1205

    CAS  PubMed  Google Scholar 

  21. Sacchetto R, Bertipaglia I, Giannetti S, Cendron L, Mascarello F, Damiani E, Carafoli E, Zanotti G (2012) Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. J Struct Biol 178:38–44

    Article  CAS  PubMed  Google Scholar 

  22. Goll DE, Thompson VF, Li HQ, Wei W, Cong JY (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  23. Pomponio L, Lametsch R, Karlsson AH, Costa LN, Grossi A, Ertbjerg P (2008) Evidence for post mortem m-calpain autolysis in porcine muscle. Meat Sci 80:761–4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Walter Stoiber, Dr. Peter Steinbacher, and Prof. Edith Tutsch-Bauer for their input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Esra Foditsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foditsch, E.E., Saenger, A.M. & Monticelli, F.C. Skeletal muscle proteins: a new approach to delimitate the time since death. Int J Legal Med 130, 433–440 (2016). https://doi.org/10.1007/s00414-015-1204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1204-4

Keywords

Navigation