Skip to main content

Advertisement

Log in

Ground truth data generation for skull–face overlay

  • Technical Note
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Objective and unbiased validation studies over a significant number of cases are required to get a more solid picture on craniofacial superimposition reliability. It will not be possible to compare the performance of existing and upcoming methods for craniofacial superimposition without a common forensic database available for the research community. Skull–face overlay is a key task within craniofacial superimposition that has a direct influence on the subsequent task devoted to evaluate the skull–face relationships. In this work, we present the procedure to create for the first time such a dataset. We have also created a database with 19 skull–face overlay cases for which we are trying to overcome legal issues that allow us to make it public. The quantitative analysis made in the segmentation and registration stages, together with the visual assessment of the 19 face-to-face overlays, allows us to conclude that the results can be considered as a gold standard. With such a ground truth dataset, a new horizon is opened for the development of new automatic methods whose performance could be now objectively measured and compared against previous and future proposals. Additionally, other uses are expected to be explored to better understand the visual evaluation process of craniofacial relationships in craniofacial identification. It could be very useful also as a starting point for further studies on the prediction of the resulting facial morphology after corrective or reconstructive interventionism in maxillofacial surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. www.meprocs.eu

References

  1. Burns KR (2012) Forensic anthropology training manual, 3rd edn. Pearson Education, Upper Saddle River

    Google Scholar 

  2. Cattaneo C (2007) Forensic anthropology: development of a classical discipline in the new millennium. Forensic Sci Int 165(2–3):185–193

    Article  PubMed  Google Scholar 

  3. Yoshino M (2012) Craniofacial superimposition. In: Wilkinson C, Rynn C (eds) Craniofacial identification. University Press, Cambridge, pp 238–253

    Chapter  Google Scholar 

  4. Aulsebrook WA, Iscan MY, Slabbert JM, Beckert P (1995) Superimposition and reconstruction in forensic facial identification: a survey. Forensic Sci Int 75(2–3):101–120

    Article  CAS  PubMed  Google Scholar 

  5. Stephan CN (2009) Craniofacial identification: techniques of facial approximation and CFS. In: Blau S, Ubelaker DH (eds) Handbook of forensic anthropology and archaeology. Left Coast, California, pp 304–321

    Google Scholar 

  6. Damas S, Cordón O, Ibáñez O, Santamaría J, Alemán I, Botella M (2011) Forensic identification by computer-aided CFS: a survey. ACM Comput Surv 43(4):27

    Article  Google Scholar 

  7. Al-Amad S, McCullough M, Graham J, Clement J, Hill A (2006) Craniofacial identification by computer-mediated superimposition. J Forensic Odontostomatol 24(2):47–52

    CAS  PubMed  Google Scholar 

  8. Glaister J, Brash JC (1937) Medico-legal aspects of the Ruxton case. E and S Livingstone, Edinburgh

    Google Scholar 

  9. Galton F (1896) The Bertillon system of identification. Nature 54:569–570

    Article  Google Scholar 

  10. Broca P (1875) Instructions craniologiques et craniométriques de la Société d’Anthrpologie de Paris [in French]. In Masson G (ed), vii Paris

  11. Ubelaker DH, Bubniak E, Odonnell G (1992) Computer-assisted photographic superimposition. J Forensic Sci 37(3):750–762

    Google Scholar 

  12. Dorion RB (1983) Photographic superimposition. J Forensic Sci 28(3):724–734

    CAS  PubMed  Google Scholar 

  13. Brocklebank LM, Holmgren CJ (1989) Development of equipment for the standardization of skull photographs in personal identifications by photographic superimposition. J Forensic Sci 34(5):1214–1221

    CAS  PubMed  Google Scholar 

  14. Maat GJ (1989) The positioning and magnification of faces and skulls for photographic superimposition. Forensic Sci Int 41(3):225–235

    Article  CAS  PubMed  Google Scholar 

  15. Helmer R, Grüner O (1976) Vereinfachte Schädelidentifizierung nach dem Superprojektionsverfahren mit Hilfe einer Video-Anlage [in German]. Z für Rechtsmedizin 80 (3):v

  16. Fenton TW, Heard AN, Sauer NJ (2008) Skull-photo superimposition and border deaths: identification through exclusion and the failure to exclude. J Forensic Sci 53(1):34–40

    Article  PubMed  Google Scholar 

  17. Seta S, Yoshino M (1993) A combined apparatus for photographic and video superimposition. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull. Wiley, New York, pp 161–169

    Google Scholar 

  18. Lan Y, Cai D (1993) Technical advances in skull-photo superimposition. In Iscan MY and Helmer R

  19. Pesce Delfino V, Colonna M, Vacca E, Potente F, Introna F (1986) Computer-aided skull/face superimposition. Am J Forensic Med Pathol 7(3):201–212

    Article  CAS  PubMed  Google Scholar 

  20. Ricci A, Marella GL, Apostol MA (2006) A new experimental approach to computer-aided face/skull identification in forensic anthropology. Am J Forensic Med Pathol 27(1):46–49

    Article  PubMed  Google Scholar 

  21. Ghosh AK, Sinha P (2001) An economised craniofacial identification system. Forensic Sci Int 117(1–2):109–119

    Article  CAS  PubMed  Google Scholar 

  22. Nickerson BA, Fitzhorn PA, Koch SK, Charney M (1991) A methodology for near-optimal computational superimposition of two-dimensional digital facial photographs and three-dimensional cranial surface meshes. J Forensic Sci 36(2):480–500

    CAS  PubMed  Google Scholar 

  23. Huete MI, Kahana T, Ibáñez O (2014) Past, present, and future of CFS: literature and international surveys. University of Granada, Spain, Tech. Rep. DECSAI 2014–01. Submitted to legal medicine

  24. Ubelaker DH (2000) A history of Smithsonian-FBI collaboration in forensic anthropology, especially in regard to facial imagery [abstract]. Forensic Sci Commun 2 (4)

  25. Ibáñez O, Ballerini L, Cordón O, Damas S, Santamaría J (2009) An experimental study on the applicability of evolutionary algorithms to CFS in forensic identification. Inf Sci 179(23):3998–4028

    Article  Google Scholar 

  26. Ibáñez O, Cordón O, Damas S, Santamaría J (2011) Modeling the skull–face overlay uncertainty using fuzzy sets. IEEE Trans Fuzzy Syst 19(5):946–959

    Article  Google Scholar 

  27. Ibáñez O, Cordón O, Damas S (2012) A cooperative coevolutionary approach dealing with the skull-face overlay uncertainty in forensic identification by CFS. Soft Comput 18(5):797–808

    Article  Google Scholar 

  28. Campomanes-Alvarez B, Ibáñez O, Navarro F, Alemán I, Cordón O, Damas S (2014) Dispersion assessment in the location of facial landmarks on photographs. Int J Legal Med:In press

  29. De Vos W, Casselman J, Swennen GR (2009) Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 38:609–625

    Article  PubMed  Google Scholar 

  30. Swennen GRJ, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofac Orthop 130:410–416

    Article  Google Scholar 

  31. Katsumata A, Hirukawa A, Noujeim M, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2006) Image artifact in dental cone-beam CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:652–657

    Article  PubMed  Google Scholar 

  32. Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B (2010) Polygon mesh processing. AK Peters

  33. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 9:1323–1341

    Article  Google Scholar 

  34. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans SystMan Cybern 3(6):610–621

    Article  Google Scholar 

  35. Mitchell T (1997) Machine learning. McGraw Hill

  36. Loh WY (2011) Classification and regression trees. Wiley Interdisc Rew Data Min Knowl Disc 1(1):14–23

    Article  Google Scholar 

  37. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann

  38. Hall M, Frank E, Holmes G, Pfahringer BRP, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  39. Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vision Comput 21(11):977–1000

    Article  Google Scholar 

  40. Faugeras O (1993) Three-dimensional computer vision. A geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  41. Talbi E (2009) Metaheuristics: from design to implementation. Wiley

  42. Geisser S (1993) Predictive inference. Chapman and Hall, New York

    Book  Google Scholar 

  43. Gwen R, Swennen J, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofac Orthop 130:410–416

    Article  Google Scholar 

  44. Grauer D, Cevidanes LSH, Styner MA, Heulfe I, Harmon ET, Zhu H, Proffit WR (2010) Accuracy and landmark error calculation using cone-beam computed tomography-generated cephalograms. Angle Orthod 80(2):286–294

    Article  PubMed Central  PubMed  Google Scholar 

  45. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R (2009) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 71(3):461–468

    Article  CAS  PubMed  Google Scholar 

  46. Moores BM, Regulla D (2011) A review of the scientific basis for radiation protection of the patient. Radiat Prot Dosim 147(1–2):22–29

    Article  CAS  Google Scholar 

  47. Mah P, Reeves TE, McDavid WD (2010) Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 39:323–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Damas S, Cordón O, Santamaría J (2011) Medical image registration using evolutionary computation: an experimental study. IEEE Comput Intell Mag 6(4):26–42

    Article  Google Scholar 

  49. Goshtasby AA (2005) 2-D and 3-D image registration for medical, remote sensing, and industrial applications. Wiley interscience

  50. Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5):578–596

    Article  Google Scholar 

  51. Cummaudo M, Guerzoni M, Marasciuolo L, Gibelli D, Cigada A, Obertovà Z, Ratnayake M, Poppa P, Gabriel P, Rizt-Timme S, Cattaneo C (2013) Pitfalls at the root of facial assessment on photographs: a quantitative study of accuracy in positioning facial landmarks. Int J Legal Med 127:699–706

    Article  CAS  PubMed  Google Scholar 

  52. Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Bergé SJ (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 40(4):341–345

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the participants that give us the permission to work with both their head scans and facial photographs, Drs. Luca Contardo and Domenico Dalessandri for the support provided during images acquisition and head scanning. The University Hospital of Trieste and Ortoscan for supporting this research. This work has been supported by the Spanish Ministerio de Economía y Competitividad under the SOCOVIFI2 project (refs. TIN2012-38525-C01/C02, http://www.softcomputing.es/socovifi/), the Andalusian Department of Innovación, Ciencia y Empresa under project TIC2011-7745, the Principality of Asturias Government under the project with reference CT13-55, and the European Union’s Seventh Framework Programme for research technological development and demonstration under the MEPROCS project (Grant Agreement No. 285624), including European Development Regional Funds (EDRF). Mrs. C. Campomanes-Álvarez’s work has been supported by Spanish MECD FPU grant AP-2012-4285. Dr. Ibañez’s work has been supported by Spanish MINECO Juan de la Cierva Fellowship JCI-2012-15359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ibáñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibáñez, O., Cavalli, F., Campomanes-Álvarez, B.R. et al. Ground truth data generation for skull–face overlay. Int J Legal Med 129, 569–581 (2015). https://doi.org/10.1007/s00414-014-1074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1074-1

Keywords

Navigation