Skip to main content
Log in

PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Unclassified sudden infant death (USID) is the sudden and unexpected death of an infant that remains unexplained after thorough case investigation including performance of a complete autopsy and review of the circumstances of death and the clinical history. When the infant is below 1 year of age and with onset of the fatal episode apparently occurring during sleep, this is referred to as sudden infant death syndrome (SIDS). USID and SIDS remain poorly understood despite the identification of several environmental and some genetic risk factors. In this study, we investigated genetic risk factors involved in the autonomous nervous system in 195 Dutch USID/SIDS cases and 846 Dutch, age-matched healthy controls. Twenty-five DNA variants from 11 genes previously implicated in the serotonin household or in the congenital central hypoventilation syndrome, of which some have been associated with SIDS before, were tested. Of all DNA variants considered, only the length variation of the polyalanine repeat in exon 3 of the PHOX2B gene was found to be statistically significantly associated with USID/SIDS in the Dutch population after multiple test correction. Interestingly, our data suggest that contraction of the PHOX2B exon 3 polyalanine repeat that we found in six of 160 SIDS and USID cases and in six of 814 controls serves as a probable genetic risk factor for USID/SIDS at least in the Dutch population. Future studies are needed to confirm this finding and to understand the functional effect of the polyalanine repeat length variation, in particular contraction, in exon 3 of the PHOX2B gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krous HF, Beckwith JB, Byard RW et al (2004) Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 114:234–238

    Article  PubMed  Google Scholar 

  2. Centraal bureau voor statistiek (2012) www.cbs.nl. Accessed Dec 2012

  3. American Academy of Pediatrics Task Force on Sudden Infant Death Syndrome (2011) SIDS and other sleep-related infant deaths: expansion of recommendations for a safe infant sleeping environment. Pediatrics 128(5):e1341–e1367. doi:10.1542/peds.2011-2285

    Article  Google Scholar 

  4. Engelberts AC, de Jonge GA (1988) Sleeping position and cot death. Lancet 2(8616):899–900

    Article  CAS  PubMed  Google Scholar 

  5. Liebrechts-Akkerman G, Lao O, Liu F et al (2011) Postnatal parental smoking: an important risk factor for SIDS. Eur J Pediatr 170(10):1281–91. doi:10.1007/s00431-011-1433-6

    Article  PubMed Central  PubMed  Google Scholar 

  6. Opdal SH, Rognum TO (2004) The sudden infant death syndrome gene: does it exist? Pediatrics 114(4):e506–12

    Article  PubMed  Google Scholar 

  7. Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE (2013) Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol 20(1):44–55. doi:10.1016/j.spen.2013.01.005

    Article  PubMed  Google Scholar 

  8. Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Rand CM (2008) Congenital central hypoventilation syndrome (CCHS) and sudden infant death syndrome (SIDS): kindred disorders. Respir Physiol Neurobiol 164(1–2):38–48

    Article  CAS  PubMed  Google Scholar 

  9. Amiel J, Laudier B, Attié-Bitach T et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Gen 33:459–461

    Article  CAS  Google Scholar 

  10. Weese-Mayer DE, Berry-Kravis EM, Zhou L et al (2003) Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2B. Am J Med Genet A 123A:267–78

    Article  PubMed  Google Scholar 

  11. Gaultier C, Amiel J, Dauger S et al (2004) Genetics and early disturbance in breathing control. Ped res 55(5):729–33

    Article  Google Scholar 

  12. Amiel J, Salomon R, Attie R et al (1998) Mutations of the RET-GDNF signaling pathway in Odine’s curse. Am J Hum Genet 62:715–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weese-Mayer DE, Berry-Kravis EM, Zhou L et al (2004) Sudden infant death syndrome: case–control frequency differences at gene pertinent to early autonomic nervous system embryologic development. Pediatr Res 56(3):391–5

    Article  CAS  PubMed  Google Scholar 

  14. Weese-Mayer DE, Berry-Kravis EM, Maher BS et al (2003) Sudden infant death syndrome: association with a promotor polymorphism of the serotonin transporter gene. Am J Med Genet A 117A:268–74

    Article  PubMed  Google Scholar 

  15. Weese-Mayer DE, Zhou L, Berry-Kravis EM et al (2003) Association of serotonin transporter gene with sudden infant death syndrome: a haplotype analysis. Am J Med Genet A 122A:238–45

    Article  PubMed  Google Scholar 

  16. Narita N, Narita M, Takashima S et al (2001) Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in Japanese population. Pediatrics 107:690–2

    Article  CAS  PubMed  Google Scholar 

  17. Opdal SH, Vege A, Rognum TO (2008) Serotonin transporter gene variation in sudden infant death syndrome. Acta Paediatr 97(7):861–5

    Article  CAS  PubMed  Google Scholar 

  18. Nonnis Marzano F, Maldini M, Filonzi L et al (2008) Genes regulating the serotonin metabolic pathway in the brain stem and their role in the etiopathogenesis of sudden infant death syndrome. Genomics 91(6):485–91

    Article  CAS  PubMed  Google Scholar 

  19. Haas C, Braun J, Bar W, Bartsch C (2009) No association of serotonin transporter gene variation with sudden infant death syndrome (SIDS) in Caucasians. Leg Med (Tokyo). doi:10.1016/j.legalmed.2009.01.051

    Google Scholar 

  20. Paterson DS, Trachtenberg FL, Thompson EG et al (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296(17):2124–2144

    Article  CAS  PubMed  Google Scholar 

  21. Liebrechts-Akkerman G, de Jonge GA, Bovee JVMG et al (2013) Histological findings in unclassified sudden infant death, including sudden infant death syndrome. Pediatr Dev Pathol 16(3):168–76. doi:10.2350/12-10-1262-OA.1

    Article  PubMed  Google Scholar 

  22. Jaddoe VW, van Duijn CM, Franco OH et al (2012) The Generation R Study: design and cohort update 2012. Eur J Epidemiol 27(9):739–56. doi:10.1007/s10654-012-9735-1

    Article  PubMed  Google Scholar 

  23. Sullivan KM, Mannucci A, Kimpton CP, Gill P (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15(4):636–638, 640–1

    CAS  PubMed  Google Scholar 

  24. www.hapmap.org. Accessed 2005

  25. Curtin F, Schulz P (1998) Multiple correlations and Bonferroni’s correction. Biol Psychiatry 44(8):775–7

    Article  CAS  PubMed  Google Scholar 

  26. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dubreuil V, Ramanantsoa N, Trochet D et al (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fetal central apnea, and specific loss of parafacial neurons. Proc Natl Aad Sci USA 105(3):1067–72

    Article  CAS  Google Scholar 

  28. Lavezzi AM, Weese-Mayer DE, Yu MY et al (2012) Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death. Auton Neurosci 170(1–2):12–9. doi:10.1016/j.autneu.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  29. Rand CM, Weese-Mayer DE, Zhou L et al (2006) Sudden infant death syndrome: case–control frequency differences in paired like homeobox (PHOX) 2B gene. Am J Med Genet A 140(15):1687–91

    Article  PubMed  Google Scholar 

  30. Kijima K, Sasaki A, Niki T et al (2004) Sudden infant death syndrome is not associated with the mutation of PHOX2B gene, a major causative gene of congenital central hypoventilation syndrome. Tohoku J Exp Med 203(1):65–8

    Article  CAS  PubMed  Google Scholar 

  31. Jennings LJ, Yu M, Rand CM et al (2012) Variable human phenotype associated with novel deletions of the PHOX2B gene. Pediatr Pulmonol 47(2):153–61. doi:10.1002/ppul.21527

    Article  PubMed  Google Scholar 

  32. Dauger S, Pattyn A, Lofaso F et al (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130(26):6635–42

    Article  CAS  PubMed  Google Scholar 

  33. Durand E, Dauger S, Pattyn A et al (2005) Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2B. Am J Respir Crit Care Med 172:238–243

    Article  PubMed  Google Scholar 

  34. Klopfleisch R, Weiss AT, Gruber AD (2011) Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues. Histol Histopathol 26(6):797–810

    CAS  PubMed  Google Scholar 

  35. Vallone PM, Butler JM (2004) Autodimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37(2):226–31

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all participants of the study as well as to the LWW for having collected and provided relevant information. We thank the following colleagues for having provided tissue material and record information to this study: R.R. de Krijger, Erasmus Medisch Centrum, Rotterdam; J.V.M.G. Bovee, Leids Universitair Medisch Centrum, Leiden; L.C.D. Wijnaendts, Vrije Universiteit, Amsterdam; P.G.J. Nikkels, Academisch Ziekenhuis Utrecht, Utrecht; A.H. Mulder, Ziekenhuis Rijnstate, Arnhem; R. Boorsma, Laboratorium voor de Volksgezondheid Friesland, Leeuwarden; J.C. van der Linde, Jeroen Bosch Ziekenhuis, Den Bosch; P. Blok, Ziekenhuis Leyenburg, the Hague; C. van der Hulsbergen, Academisch Ziekenhuis Nijmegen St Radboud, Nijmegen; A. Timmer, Universitair Medisch Centrum Groningen, Groningen; S.J.F. Schoots, St. Samenwerkende Ziekenhuizen Oost Groningen, Wintschoten; F.J. ten Kate, Academisch Medisch Centrum, Amsterdam; A. Maes, Nederlands Forensisch Instituut, the Hague; P. Westenend, Pathologisch Laboratorium voor Dordrecht en Omstreken, Dordrecht; W.S. Kwee, St. Jansgasthuis and Laurentius Ziekenhuis, Roermond and Weert; D. Willebrand, Streeklaboratorium voor de Volksgezondheid, Haarlem; R.N. Breeuwsma, Medisch Centrum Alkmaar, Alkmaar; M. Brinkhuis, Laboratorium voor Pathologie Oost Nederland, Enschede; N. Vandevijver, Atrium, Heerlen; Nijhuis, Onze Lieve Vrouwe Gasthuis, Amsterdam; M. Baldewijns, Academisch Ziekenhuis Maastricht, Maastricht; C.M. van Dijk, Groene Hart Ziekenhuis, Gouda; E. de Ruijter, Amphia Ziekenhuis, Breda; J.A. Ruizeveld de Winter, Pathan, Rotterdam; I. van Lijnschoten, Stichting PAMM, Eindhoven; R.F.M. Schapers, St. Pathologisch Laboratorium Noord-Limburg, Venlo; C. Wauters, Canisius-Wilhelmina Ziekenhuis, Nijmegen; C.A. Seldenrijk, St. Antonius Ziekenhuis, Nieuwegein; E.C.M. Ooms, Haaglanden, the Hague; H. Beerman, Medisch Centrum Rotterdam Zuid, Rotterdam; J.G. Smits, Streeklaboratorium Zeeland, Middelburg; R. Dutrieux, Zaans Medisch Centrum, Zaandam; A.M. Croonen, Lab Klinische Pathologie Centraal Brabant, Tilburg; E.M. van der Loo, Reinier de Graafziekenhuis, Delft; J.W. Arends, Deventer Ziekenhuizen, Deventer; and W.A. van Houten, Laboratorium voor Pathologie St. Sazinon, Hoogeveen. We also like to thank Arwin Ralf, Kaye Ballantyne and Ying Choi for their support in DNA analyses. This study was supported by the Erasmus University Medical Center Rotterdam and in part by funding provided by the Netherlands Forensic Institute. The Generation R Study gratefully acknowledges the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. The Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, the Netherlands Organization for Health Research and Development (ZonMw), the Netherlands Organisation for Scientific Research (NWO), the Ministry of Health, Welfare and Sport of the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kayser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebrechts-Akkerman, G., Liu, F., Lao, O. et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Legal Med 128, 621–629 (2014). https://doi.org/10.1007/s00414-013-0962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-013-0962-0

Keywords

Navigation