Skip to main content

Advertisement

Log in

Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum

  • Population Data
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Age estimation of living individuals is of critical importance in forensic practice, especially because of the increased migration in developed countries. Recently, the contribution of magnetic resonance imaging (MRI) to age evaluation has been studied, as it seems to be an efficient technique to analyze growth plate maturation and epiphyseal fusion. We developed an MRI staging system for the distal tibial epiphysis and the calcaneal epiphysis and evaluated its reliability on 180 MRI scans of the ankle and foot in a sample of individuals aged from 8 to 25 years old. For both bones, the degree of union between the metaphysis and epiphysis was classified in three stages. Intra- and inter-observer variabilities were good, showing the validity and reproducibility of the method. Our results were consistent with data in the literature indicating that both epiphyses mature earlier in females than in males. Bayesian predictive probabilities were used to assess the validity of our method in estimating the age of an individual in relation to the 18-year threshold. MRI of the ankle and foot can be used in association with other methods to estimate age in living individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmeling A, Olze A, Reisinger W, König M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charité. Leg Med 5:S367–S371

    Article  Google Scholar 

  2. Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. Lancet 358:89–90

    Article  PubMed  CAS  Google Scholar 

  3. Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144:243–245

    Article  PubMed  CAS  Google Scholar 

  4. Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159(suppl 1):S61–S64

    Article  PubMed  Google Scholar 

  5. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181

    Article  PubMed  CAS  Google Scholar 

  6. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460

    Article  PubMed  CAS  Google Scholar 

  7. Schmeling A, Olze A, Reisinger W, Rosing FW, Geserick G (2003) Forensic age diagnostics of living individuals in criminal proceedings. Homo 54:162–169

    Article  PubMed  CAS  Google Scholar 

  8. Bassed RB, Briggs C, Drummer OH (2012) The incidence of asymmetrical left/right skeletal and dental development in an Australian population and the effect of this on forensic age estimations. Int J Leg Med 126:251–257

    Article  Google Scholar 

  9. Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Leg Med 126:285–292

    Article  CAS  Google Scholar 

  10. Chandrakanth HV, Kanchan T, Krishan K, Arun M, Kumar P (2012) Estimation of age from human sternum: an autopsy study on a sample from South India. Int J Leg Med 126:863–868

    Article  CAS  Google Scholar 

  11. Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L (2012) Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to asses 18 years of age in living subjects. Int J Leg Med 126:923–932

    Article  CAS  Google Scholar 

  12. Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Leg Med 123:241–245

    Article  Google Scholar 

  13. Schmidt S, Schmeling A, Zwiesigk P, Pfeiffer H, Schulz R (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276

    Article  PubMed  Google Scholar 

  14. Schmidt S, Mühler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324

    Article  PubMed  Google Scholar 

  15. Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767

    Article  PubMed  Google Scholar 

  16. Dvorak J (2009) Detecting over-age players using wrist MRI: science partnering with sport to ensure fair play. Br J Sports Med 43:884–885

    Article  PubMed  Google Scholar 

  17. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52

    Article  PubMed  Google Scholar 

  18. Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41:497–500

    Article  PubMed  Google Scholar 

  19. Jopp E, Schröder I, Maas R, Adam G, Püschel K, Hertzog C (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm. Rechtsmedizin 20:464–468

    Article  Google Scholar 

  20. Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:232.e1–232.e7

    Article  Google Scholar 

  21. Crowder C, Austin D (2005) Age ranges of epiphyseal fusion in the distal tibia and fibula of contemporary males and females. J Forensic Sci 50:1001–1007

    Article  PubMed  Google Scholar 

  22. Flecker H (1932) Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat 67(Pt 1):118–164

    PubMed  CAS  Google Scholar 

  23. Ogden JA, McCarthy SM (1983) Radiology of postnatal skeletal development. VIII. Distal tibia and fibula. Skeletal Radiol 10:209–220

    Article  PubMed  CAS  Google Scholar 

  24. Banerjee KK, Agarwal BB (1998) Estimation of age from epiphyseal union at the wrist and ankle joints in the capital city of India. Forensic Sci Int 98:31–39

    Article  PubMed  CAS  Google Scholar 

  25. Hoerr NL, Pyle SI, Francis CC (1962) Radiographic atlas of skeletal development of the foot and ankle—a standard of reference. Thomas, Springfield, IL

    Google Scholar 

  26. McKern TW, Stewart TD (1957) Skeletal age changes in young American males analyzed from the standpoint of age determination. Technical Report EP-45. Environmental Protection Research Division, HQ=Quartermaster Research and Development Command, United States Army, Natick, MA

    Google Scholar 

  27. Bass W (2005) Human osteology—a laboratory and field manual of the human skeleton. Archaeological Society, Columbia, MO

    Google Scholar 

  28. Scheuer L, Black SM (2000) Developmental juvenile osteology. Elsevier/Academic, Amsterdam

    Google Scholar 

  29. Ferembach D, Schwidetzky I, Stloukal M (1979) Recommandations pour determiner l’âge et le sexe sur le squelette. Bull Mém Soc Anthrop Paris 6:7–45

    Article  Google Scholar 

  30. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-9000051-07-0 http://www.R-project.org

  31. Cohen J (1960) A coefficient of agreement for normal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  32. Hoppa RD, Vaupel JW (2002) Paleodemography. Age distributions from skeletal samples. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Hartigan JA (1983) Bayes theory. Springer, New York

    Book  Google Scholar 

  34. Tersigni-Tarrant MT, Shirley NR (2012) Forensic anthropology: an introduction. CRC

  35. Bokariya P, Chowdhary DS, Tirpude BH, Sonatakke B, Wankhede V, Tarnekar A (2010) Age determination in girls of Jodhpur region by epiphyseal union of bones at ankle joint. J Indian Acad Forensic Med 32:42–44

    Google Scholar 

  36. Davies DA, Parsons FG (1927) The age order of the appearance and union of the normal epiphyses as seen by X-rays. J Anat 62:58–71

    PubMed  CAS  Google Scholar 

  37. Cardoso HF (2008) Epiphyseal union at the innominate and lower limb in a modern Portuguese skeletal sample, and age estimation in adolescent and young adult male and female skeletons. Am J Phys Anthropol 135:161–170

    Article  PubMed  Google Scholar 

  38. Iscan MY (1989) Age markers in the human skeleton. Thomas, Springfield, IL

    Google Scholar 

  39. O'Connor JE, Bogue C, Spence LD, Last J (2008) A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anat 212:198–209

    Article  PubMed  Google Scholar 

  40. Coqueugniot H, Weaver TD (2007) Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. Am J Phys Anthropol 134:424–437

    Article  PubMed  Google Scholar 

  41. Schaefer MC, Black SM (2007) Epiphyseal union sequencing: aiding in the recognition and sorting of commingled remains. J Forensic Sci 52:277–285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere appreciation is expressed to Nina Crowte for her assistance in the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Saint-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Martin, P., Rérolle, C., Dedouit, F. et al. Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127, 1023–1030 (2013). https://doi.org/10.1007/s00414-013-0844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-013-0844-5

Keywords

Navigation