Skip to main content
Log in

Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing

  • Technical Note
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Analysis of mtDNA variation using Sanger sequencing does not allow accurate quantification of the components of mtDNA mixtures. An alternative method to determine the specific mixture ratios in samples displaying heteroplasmy, consisting of DNA contributions from several individuals, or containing contamination would therefore be valuable. A novel quantification system for mtDNA mixture analysis has been developed based on pyrosequencing technology, in which the linear relationship between incorporated nucleotides and released light allows quantification of the components of a sample. Within five polymerase chain reaction fragments, seven variable positions in the mtDNA control and coding region were evaluated using this quantification analysis. For all single nucleotide polymorphisms quantified in this study, a linear relationship was observed between the measured and expected mixture ratios. This mtDNA quantification assay is an easy to use, fast and accurate quantification system, with the ability to resolve and interpret major and minor mtDNA components in forensic mixture samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clayton TM, Whitaker JP, Sparkes R, Gill P (1998) Analysis and interpretation of mixed forensic stains using DNA STR profiling. Forensic Sci Int 91:55–70

    Article  PubMed  CAS  Google Scholar 

  2. Wilson MR, Polanskey D, Butler J, DiZinno JA, Replogle J, Budowle B (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18:662–669

    PubMed  CAS  Google Scholar 

  3. Allen M, Engstrom AS, Meyers S et al (1998) Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci 43:453–464

    PubMed  CAS  Google Scholar 

  4. Steighner RJ, Holland M (1998) Amplification and sequencing of mitochondrial DNA in forensic casework. Methods Mol Biol 98:213–223

    PubMed  CAS  Google Scholar 

  5. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  6. Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397

    Article  PubMed  CAS  Google Scholar 

  7. Parker LT, Zakeri H, Deng Q, Spurgeon S, Kwok PY, Nickerson DA (1996) AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques 21:694–699

    PubMed  CAS  Google Scholar 

  8. Parker LT, Deng Q, Zakeri H, Carlson C, Nickerson DA, Kwok PY (1995) Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques 19:116–121

    PubMed  CAS  Google Scholar 

  9. Walker JA, Garber RK, Hedges DJ, Kilroy GE, Xing J, Batzer MA (2004) Resolution of mixed human DNA samples using mitochondrial DNA sequence variants. Anal Biochem 325:171–173

    Article  PubMed  CAS  Google Scholar 

  10. LaBerge GS, Shelton RJ, Danielson PB (2003) Forensic utility of mitochondrial DNA analysis based on denaturing high-performance liquid chromatography. Croat Med J 44:281–288

    PubMed  Google Scholar 

  11. Lutz S, Weisser HJ, Heizmann J, Pollak S (2000) Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med 113:155–161

    Article  PubMed  CAS  Google Scholar 

  12. Lutz-Bonengel S, Sanger T, Pollak S, Szibor R (2004) Different methods to determine length heteroplasmy within the mitochondrial control region. Int J Legal Med 118:274–281

    Article  PubMed  Google Scholar 

  13. Niederstatter H, Coble MD, Grubwieser P, Parsons TJ, Parson W (2005) Characterization of mtDNA SNP typing and mixture ratio assessment with simultaneous real-time PCR quantification of both allelic states. Int J Legal Med 120:18–23

    Article  PubMed  Google Scholar 

  14. Gruber JD, Colligan PB, Wolford JK (2002) Estimation of single nucleotide polymorphism allele frequency in DNA pools by using pyrosequencing. Hum Genet 110:395–401

    Article  PubMed  CAS  Google Scholar 

  15. Wasson J, Skolnick G, Love-Gregory L, Permutt MA (2002) Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology. Biotechniques 32:1144–1146, 1148, 1150 passim

    PubMed  CAS  Google Scholar 

  16. Uhlmann K, Brinckmann A, Toliat MR, Ritter H, Nurnberg P (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl–single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    Article  PubMed  CAS  Google Scholar 

  17. Soderback E, Zackrisson AL, Lindblom B, Alderborn A (2005) Determination of CYP2D6 gene copy number by pyrosequencing. Clin Chem 51:522–531

    Article  PubMed  Google Scholar 

  18. Pielberg G, Day AE, Plastow GS, Andersson L (2003) A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res 13:2171–2177

    Article  PubMed  CAS  Google Scholar 

  19. Sun A, Ge J, Siffert W, Frey UH (2005) Quantification of allele-specific G-protein beta3 subunit mRNA transcripts in different human cells and tissues by pyrosequencing. Eur J Hum Genet 13:361–369

    Article  PubMed  CAS  Google Scholar 

  20. Andreasson H, Asp A, Alderborn A, Gyllensten U, Allen M (2002) Mitochondrial sequence analysis for forensic identification using pyrosequencing technology. Biotechniques 32:124–126, 128, 130–133

    PubMed  CAS  Google Scholar 

  21. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    PubMed  CAS  Google Scholar 

  22. Andreasson H, Gyllensten U, Allen M (2002) Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques 33:402–404, 407–411

    PubMed  CAS  Google Scholar 

  23. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B (2005) Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Legal Med 119:291–294

    Article  PubMed  CAS  Google Scholar 

  24. Budowle B, Wilson MR, DiZinno JA et al (1999) Mitochondrial DNA regions HVI and HVII population data. Forensic Sci Int 103:23–35

    Article  PubMed  CAS  Google Scholar 

  25. Budowle B, Allard MW, Wilson MR (2002) Critique of interpretation of high levels of heteroplasmy in the human mitochondrial DNA hypervariable region I from hair. Forensic Sci Int 126:30–33

    Article  PubMed  CAS  Google Scholar 

  26. Jehaes E, Gilissen A, Cassiman JJ, Decorte R (1998) Evaluation of a decontamination protocol for hair shafts before mtDNA sequencing. Forensic Sci Int 94:65–71

    Article  PubMed  CAS  Google Scholar 

  27. Weir BS, Triggs CM, Starling L, Stowell LI, Walsh KA, Buckleton J (1997) Interpreting DNA mixtures. J Forensic Sci 42:213–222

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from Kjell and Märta Beijers Foundation, the Göran Gustafsson Foundation, the Swedish Research Council (Medicine) and VINNOVA (Swedish Agency for Innovation Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Allen.

Additional information

H. Andréasson and M. Nilsson have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andréasson, H., Nilsson, M., Budowle, B. et al. Quantification of mtDNA mixtures in forensic evidence material using pyrosequencing. Int J Legal Med 120, 383–390 (2006). https://doi.org/10.1007/s00414-005-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-005-0072-8

Keywords

Navigation