Skip to main content
Log in

Value of morphological parameters for grading of brain swelling

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

This study investigated the value of both gross features and histological findings for grading of brain swelling. For this purpose, the grooving of the temporal gyri (unci) as well as the extension of the cones at the basal part of the cerebellum were measured in 42 brains obtained at autopsy. Furthermore, the distension of perivascular spaces in tissue samples from seven different regions of the brains was evaluated histologically, assisted by an automatic image processing and analysis system. In each individual, the normal range of brain weight was calculated on the basis of the body height, using the formulae by Röthig and Schaarschmidt. The difference between this calculated (normal) value and the brain weight evaluated at autopsy was considered as a reliable criterion for the grade of brain swelling. There was no statistical evidence of a positive correlation between the various parameters. Hence, it can be concluded that both gross section and histological findings are of minimal significance for grading of brain swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feigin I (1967) Sequence of pathologic changes in brain edema. In: Klatzko I, Seitelberger F (eds) Brain edema. Springer, Berlin Heidelberg New York, pp 129–151

    Google Scholar 

  2. Feigin I, Popoff N (1962) Neuropathological observations on cerebral edema. Arch Neurol 6:151–160

    PubMed  CAS  Google Scholar 

  3. Fisher CM (1984) Acute brain herniation—a revised concept. Semin Neurol 4:417–421

    Article  Google Scholar 

  4. Fisher CM (1995) Brain herniation: a revision of classical concepts. Can J Neurol Sci 22:83–91

    PubMed  CAS  Google Scholar 

  5. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and α1-antichymotrypsin after traumatic injury to human brain. Int J Leg Med 114:338–342

    Article  CAS  Google Scholar 

  6. Hausmann R, Rieß R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Leg Med 113:70–75

    Article  CAS  Google Scholar 

  7. Kibayashi K, Shojo H (2003) Heat-induced immunoreactivity of tau protein in neocortical neurons of fire fatalities. Int J Leg Med 117:282–286

    Article  Google Scholar 

  8. Long DM, Hartmann JF, French LA (1966) The ultrastructure of human cerebral edema. J Neuropathol Exp Neurol 25:373–395

    Article  PubMed  CAS  Google Scholar 

  9. Madro R, Chagowski W (1987) An attempt at objectivity of post mortem diagnostic of brain oedema. Forensic Sci Int 35:125–129

    Article  PubMed  CAS  Google Scholar 

  10. Manz HJ (1974) The pathology of cerebral edema. Human Pathol 5:291–313

    Article  CAS  Google Scholar 

  11. Matschke J, Tsokos M (2005) Sudden unexpected death due to undiagnosed glioblastoma. Report of three cases and review of the literature. Int J Leg Med DOI: 10.1007/s00414-005-0551-y

  12. Meyer A (1920) Herniation of the brain. Arch Neurol Psychiatr 4:387–400

    Google Scholar 

  13. Meyermann R, Engel S, Wehner HD, Schlüsener HJ (1997) Microglial reactions in severe closed head injury. In: Oehmichen M, König HG (eds) Neurotraumatology—biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp 261–278

    Google Scholar 

  14. Oehmichen M, Gencic M, Grüninger H (1979) Prae- und postmortale intracerebrale Plasmadiffusion. Lichtmikroskopische Untersuchungen am Hirnoedem. Beitr Gerichtl Med 37:271–275

    PubMed  CAS  Google Scholar 

  15. Röthig W (1976) The so-called pressure zone of the cerebellum. Gegenbaurs Morphol Jahrb 122:882–907

    PubMed  Google Scholar 

  16. Röthig W, Schaarschmidt W (1977) Lineare Zusammenhänge zwischen Körperlänge und Hirnmasse. Gegenbaurs Morphol Jahrb 123:208–213

    PubMed  Google Scholar 

  17. Saukko P, Knight B (2004) Head and spinal injuries. In: Saukko P, Knight B (eds) Knight's forensic pathology. Arnold, London, pp 174–221

    Google Scholar 

  18. Scheinker IM (1945) Transtentorial herniation of the brain stem: a characteristic clinicopathologic syndrome: pathogenesis of hemorrhages in the brain stem. Arch Neurol Psychiatr 53:289–298

    Google Scholar 

  19. Scheinker IM (1947) Cerebral swelling: histopathology, classification and clinical significance of brain edema. J Neurosurg 4:255–275

    Article  Google Scholar 

  20. Yates AJ, Thelmo W, Pappius HM (1975) Postmortem changes in the chemistry and histology of normal and edematous brains. Am J Pathol 79:555–564

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hausmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausmann, R., Vogel, C., Seidl, S. et al. Value of morphological parameters for grading of brain swelling. Int J Legal Med 120, 219–225 (2006). https://doi.org/10.1007/s00414-005-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-005-0021-6

Keywords

Navigation