Skip to main content
Log in

Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription–replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription–replication conflicts transition from S phase into various aberrant DNA structures in mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124

    Article  CAS  PubMed  Google Scholar 

  • Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34:722–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan L, Bambara RA (2013a) Flap endonuclease 1. Annu Rev Biochem 82:119–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan L, Bambara RA (2013b) Okazaki fragment metabolism. Cold Spring Harbor perspectives in biology 5

  • Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, Luke B (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 40:7358–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann C, Korner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114

    Article  CAS  PubMed  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature (London) 463:899–905

    Article  CAS  Google Scholar 

  • Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature (London) 511:362–365

    Article  CAS  Google Scholar 

  • Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C et al (2010) Signatures of mutation and selection in the cancer genome. Nature (London) 463:893–898

    Article  CAS  Google Scholar 

  • Blanco MG, Matos J, West SC (2014) Dual control of yen1 nuclease activity and cellular localization by cdk and cdc14 prevents genome instability. Mol Cell 54:94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blower MD (2016) Centromeric transcription regulates Aurora-B localization and activation. Cell Rep

  • Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643

    Article  CAS  PubMed  Google Scholar 

  • Callegari AJ (2016) Does transcription-associated DNA damage limit lifespan? DNA Repair (Amst) 41:1–7

    Article  CAS  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    Article  CAS  PubMed  Google Scholar 

  • Castel SE, Ren J, Bhattacharjee S, Chang AY, Sanchez M, Valbuena A, Antequera F, Martienssen RA (2014) Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E, Perez-Alegre M, Garcia-Muse T, Aguilera A (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52:583–590

    Article  CAS  PubMed  Google Scholar 

  • Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. Embo J 26:3397–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760

    Article  CAS  PubMed  Google Scholar 

  • Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109:1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez S, Aguilera A (1997) The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 11:3459–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente-Blanco A, Sen N, Mayan-Santos M, Sacristan MP, Graham B, Jarmuz A, Giess A, Webb E, Game L, Eick D et al (2011) Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 13:1450–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, Haber JE, Iliakis G, Kallioniemi OP, Halazonetis TD (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91

    Article  CAS  PubMed  Google Scholar 

  • Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6:e1000835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dul JL, Drexler H (1988) Transcription stimulates recombination. II. generalized transduction of Escherichia coli by phages T1 and T4. Virology 162:471–477

    Article  CAS  PubMed  Google Scholar 

  • Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  CAS  PubMed  Google Scholar 

  • Fangman WL, Brewer BJ (1992) A question of time: replication origins of eukaryotic chromosomes. Cell 71:363–366

    Article  CAS  PubMed  Google Scholar 

  • Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, Bersani F, Pineda JR, Suva ML, Benes CH et al (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317

    Article  CAS  PubMed  Google Scholar 

  • Gaillard H, Herrera-Moyano E, Aguilera A (2013) Transcription-associated genome instability. Chem Rev 113:8638–8661

    Article  CAS  PubMed  Google Scholar 

  • Gallina I, Christiansen SK, Pedersen RT, Lisby M, Oestergaard VH (2016) TopBP1-mediated DNA processing during mitosis. Cell Cycle 15:176–183

    Article  CAS  PubMed  Google Scholar 

  • Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rubio ML, Perez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, Aguilera A (2015) The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet 11:e1005674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gonzalez B, Felipe-Abrio I, Aguilera A (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29:5203–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202

    Article  CAS  PubMed  Google Scholar 

  • Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D (2015) Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol Cell 60:797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19:84–94

    Article  CAS  Google Scholar 

  • Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR, Fraser P, Jackson SP (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht F, Glover TW (1984) Cancer chromosome breakpoints and common fragile sites induced by aphidicolin. Cancer Genet Cytogenet 13:185–188

    Article  CAS  PubMed  Google Scholar 

  • Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  CAS  PubMed  Google Scholar 

  • Hernandez P, Martin-Parras L, Martinez-Robles ML, Schvartzman JB (1993) Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J 12:1475–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721

    Article  CAS  PubMed  Google Scholar 

  • Ivaldi MS, Karam CS, Corces VG (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21:2818–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantidakis T, Saponaro M, Mitter R, Horswell S, Kranz A, Boeing S, Aygun O, Kelly GP, Matthews N, Stewart A et al (2016) Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev 30:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keil RL, Roeder GS (1984) Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39:377–386

    Article  CAS  PubMed  Google Scholar 

  • Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev 13:204–214

    CAS  Google Scholar 

  • Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J, Oshlack A, Earnshaw WC, Kalitsis P, Hudson DF (2013) Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 4:2537

    PubMed  PubMed Central  Google Scholar 

  • Kranz AL, Jiao CY, Winterkorn LH, Albritton SE, Kramer M, Ercan S (2013) Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol 14:R112

    Article  PubMed  PubMed Central  Google Scholar 

  • Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C, Allen JJ, Shokat KM, Bentley DL, Fisher RP (2012) Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 19:1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS (2014) Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 289:15064–15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibowitz ML, Zhang CZ, Pellman D (2015) Chromothripsis: a new mechanism for rapid Karyotype evolution. Annu Rev Genet 49:183–211

    Article  CAS  PubMed  Google Scholar 

  • Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature (London) 470:120–123

    Article  CAS  Google Scholar 

  • Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378

    Article  CAS  PubMed  Google Scholar 

  • Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A (2015) Mitotic transcriptional activation: clearance of actively engaged Pol II via transcriptional elongation control in mitosis. Mol Cell 60:435–445

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H (2015) Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. Mol Cell 59:426–436

    Article  CAS  PubMed  Google Scholar 

  • Looke M, Reimand J, Sedman T, Sedman J, Jarvinen L, Varv S, Peil K, Kristjuhan K, Vilo J, Kristjuhan A (2010) Relicensing of transcriptionally inactivated replication origins in budding yeast. J Biol Chem 285:40004–40011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS, Grofte M, Chan KL, Hickson ID, Bartek J et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253

    Article  CAS  PubMed  Google Scholar 

  • Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32:465–477

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Balbas MA, Dey A, Rabindran SK, Ozato K, Wu C (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38

    Article  CAS  PubMed  Google Scholar 

  • Matos J, West SC (2014) Holliday junction resolution: regulation in space and time. DNA Repair (Amst) 19:176–181

    Article  CAS  Google Scholar 

  • Matos J, Blanco MG, Maslen S, Skehel JM, West SC (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos J, Blanco MG, West SC (2013) Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation. Cell Rep 4:76–86

    Article  CAS  PubMed  Google Scholar 

  • Minocherhomji S, Ying S, Bjerregaard VA, Bursomanno S, Aleliunaite A, Wu W, Mankouri HW, Shen H, Liu Y, Hickson ID (2015) Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–290

    Article  CAS  PubMed  Google Scholar 

  • Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA (2016) XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet 12:e1006107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761–768

    Article  CAS  PubMed  Google Scholar 

  • Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff JA (1992) Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol 12:5311–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orthwein A, Fradet-Turcotte A, Noordermeer SM, Canny MD, Brun CM, Strecker J, Escribano-Diaz C, Durocher D (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193

    Article  CAS  PubMed  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature (London) 497:458–462

    Article  CAS  Google Scholar 

  • Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M (2015) TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J Cell Biol 210:565–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer V, Crittin J, Grolimund L, Lingner J (2013) The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32:2861–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike JE, Burgers PM, Campbell JL, Bambara RA (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284:25170–25180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado F, Aguilera A (2005) Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 24:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado F, Piruat JI, Aguilera A (1997) Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J 16:2826–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. Elife 3:e03254

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10

    CAS  PubMed  Google Scholar 

  • Ryu GH, Tanaka H, Kim DH, Kim JH, Bae SH, Kwon YN, Rhee JS, MacNeill SA, Seo YS (2004) Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast. Nucleic Acids Res 32:4205–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26:581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. Embo J 20:3861–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev 16:583–597

    Article  CAS  Google Scholar 

  • Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Soding J, Stewart A, Svejstrup JQ (2014) RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbajna S, Davies D, West SC (2014) Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev 28:1124–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavone D, Jozwiakowski SK, Romanello M, Guilbaud G, Guilliam TA, Bailey LJ, Sale JE, Doherty AJ (2016) PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 61:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  CAS  PubMed  Google Scholar 

  • Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W (2015) The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell 60:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A (1998) Fragile sites at the centromere of Chinese hamster chromosomes: a possible mechanism of chromosome loss. Mutat Res 397:239–246

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Padgett RA (2009) Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 16:1128–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DI, Zhu Y, McAvoy S, Kuhn R (2006) Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 232:48–57

    Article  CAS  PubMed  Google Scholar 

  • Snyder M, Sapolsky RJ, Davis RW (1988) Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol 8:2184–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuckey R, Garcia-Rodriguez N, Aguilera A, Wellinger RE (2015) Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 112:5779–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, Suzuki Y, Hirano T, Bando M, Shirahige K (2015) Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 6:7815

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  CAS  PubMed  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragon L (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111(Pt 23):3497–3506

    PubMed  Google Scholar 

  • Vilette D, Uzest M, Ehrlich SD, Michel B (1992) DNA transcription and repressor binding affect deletion formation in Escherichia coli plasmids. EMBO J 11:3629–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinciguerra P, Godinho SA, Parmar K, Pellman D, D’Andrea AD (2010) Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J Clin Invest 120:3834–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelkel-Meiman K, Keil RL, Roeder GS (1987) Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2:e00505

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, Schwer B (2016) Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164:644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P et al (2013) Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature (London) 502:393–396

    Article  CAS  Google Scholar 

  • Wilson TE, Arlt MF, Park SH, Rajendran S, Paulsen M, Ljungman M, Glover TW (2015) Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E et al (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt HD, West SC (2014) Holliday junction resolvases. Cold Spring Harb Perspect Biol 6:a023192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wyatt HD, Sarbajna S, Matos J, West SC (2013) Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol Cell 52:234–247

    Article  CAS  PubMed  Google Scholar 

  • Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Yuce O, West SC (2013) Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 33:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204

    Article  CAS  PubMed  Google Scholar 

  • Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, Meyerson M, Pellman D (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by The Danish Agency for Science, Technology and Innovation and the Villum Foundation. We thank Valeria Naim, Xin Shao, Vasileios Voutsinos, and Jakob Nilsson for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vibe H. Oestergaard or Michael Lisby.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human participant or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oestergaard, V.H., Lisby, M. Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond. Chromosoma 126, 213–222 (2017). https://doi.org/10.1007/s00412-016-0617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-016-0617-2

Keywords

Navigation