Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L’s function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L’s functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.




Similar content being viewed by others
References
Alabert C, Barth TK, Reverón-Gómez N et al (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–90. doi:10.1101/gad.256354.114
Alpatov R, Lesch BJ, Nakamoto-Kinoshita M et al (2014) A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell 157:869–81. doi:10.1016/j.cell.2014.03.040
Andersson R, Enroth S, Rada-Iglesias A et al (2009) Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19:1732–41. doi:10.1101/gr.092353.109
Armache K-J, Garlick JD, Canzio D et al (2011) Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 a resolution. Science 334:977–982. doi:10.1126/science.1210915
Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35:618–26. doi:10.1016/j.tibs.2010.05.006
Basavapathruni A, Jin L, Daigle SR et al (2012) Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des 80:971–80. doi:10.1111/cbdd.12050
Basavapathruni A, Olhava EJ, Daigle SR et al (2014) Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. Biopharm Drug Dispos 35:237–52. doi:10.1002/bdd.1889
Bernt KM, Armstrong SA (2011) A role for DOT1L in MLL -rearranged leukemias. Epigenomics 3:667–670. doi:10.2217/epi.11.98
Bernt KM, Zhu N, Sinha AU et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:66–78. doi:10.1016/j.ccr.2011.06.010
Biswas D, Milne TA, Basrur V et al (2011) Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc Natl Acad Sci U S A 108:15751–15756. doi:10.1073/pnas.1111498108
Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16:92–106. doi:10.1093/hmg/ddl444
Borkin D, He S, Miao H et al (2015) Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27:589–602. doi:10.1016/j.ccell.2015.02.016
Botuyan MV, Lee J, Ward IM et al (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127:1361–73. doi:10.1016/j.cell.2006.10.043
Cecere G, Hoersch S, Jensen MB et al (2013) The ZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. Mol Cell 50:894–907. doi:10.1016/j.molcel.2013.06.002
Chaplin T, Ayton P, Bernard OA et al (1995) A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 85:1435–41
Chatterjee C, McGinty RK, Fierz B, Muir TW (2010) Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6:267–9. doi:10.1038/nchembio.315
Chen C-W, Armstrong SA (2015) Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Exp Hematol 43:673–684. doi:10.1016/j.exphem.2015.05.012
Chen C-W, Koche RP, Sinha AU et al (2015a) DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med 21:335–343. doi:10.1038/nm.3832
Chen S, Yang Z, Wilkinson AW, et al (2015b) The PZP Domain of AF10 Senses Unmodified H3K27 to Regulate DOT1L-Mediated Methylation of H3K79. Mol Cell 60:319–327. doi:10.1016/j.molcel.2015.08.019
Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–94. doi:10.1146/annurev.biophys.34.040204.144452
Cho M-H, Park J-H, Choi H-J et al (2015) DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun 6:7821. doi:10.1038/ncomms8821
Cucinotta CE, Young AN, Klucevsek KM, Arndt KM (2015) The nucleosome acidic patch regulates the H2B K123 monoubiquitylation cascade and transcription elongation in saccharomyces cerevisiae. PLoS Genet 11:e1005420. doi:10.1371/journal.pgen.1005420
Daigle SR, Olhava EJ, Therkelsen CA et al (2013) Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122:1017–1025. doi:10.1182/blood-2013-04-497644
Daigle SR, Olhava EJ, Therkelsen CA et al (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65. doi:10.1016/j.ccr.2011.06.009
Darwanto A, Curtis MP, Schrag M et al (2010) A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J Biol Chem 285:21868–76. doi:10.1074/jbc.M110.126813
De Vos D, Frederiks F, Terweij M et al (2011) Progressive methylation of ageing histones by Dot1 functions as a timer. EMBO Rep 12:956–62. doi:10.1038/embor.2011.131
Deshpande AJ, Chen L, Fazio M et al (2013) Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121:2533–2541. doi:10.1182/blood-2012-11-465120
Deshpande AJ, Deshpande A, Sinha AU et al (2014) AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26:896–908. doi:10.1016/j.ccell.2014.10.009
Deshpande AJ, Rouhi A, Lin Y et al (2011) The clathrin-binding domain of CALM and the OM-LZ domain of AF10 are sufficient to induce acute myeloid leukemia in mice. Leukemia. doi:10.1038/leu.2011.153
DiMartino JF, Ayton PM, Chen EH et al (2002) The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 99:3780–5. doi:10.1182/blood.V99.10.3780
Egelhofer TA, Minoda A, Klugman S et al (2010) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93. doi:10.1038/nsmb.1972
Ehrentraut S, Hassler M, Oppikofer M et al (2011) Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. Genes Dev 25:1835–46. doi:10.1101/gad.17175111
Feng Q, Wang H, Ng HH et al (2002) Methylation of H3-Lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058. doi:10.1016/S0960-9822(02)00901-6
Feng Y, Yang Y, Ortega MM et al (2010) Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood 116:4483–91. doi:10.1182/blood-2010-03-276501
FitzGerald J, Moureau S, Drogaris P et al (2011) Regulation of the DNA damage response and gene expression by the Dot1L histone methyltransferase and the 53Bp1 tumour suppressor. PLoS One 6:e14714. doi:10.1371/journal.pone.0014714
Frederiks F, Tzouros M, Oudgenoeg G et al (2008) Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat Struct Mol Biol 15:550–7. doi:10.1038/nsmb.1432
Fu H, Maunakea AK, Martin MM et al (2013) Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet 9:e1003542. doi:10.1371/journal.pgen.1003542
Fuchs G, Hollander D, Voichek Y et al (2014) Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 24:1572–83. doi:10.1101/gr.176487.114
Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280:9879–86. doi:10.1074/jbc.M414453200
Gibbons GS, Owens SR, Fearon ER, Nikolovska-Coleska Z (2015) Regulation of Wnt signaling target gene expression by the histone methyltransferase DOT1L. ACS Chem Biol 10:109–14. doi:10.1021/cb500668u
Greif PA, Tizazu B, Krause A et al (2008) The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros. Oncogene 27:2886–2896. doi:10.1038/sj.onc.1210945
Guenther MG, Lawton LN, Rozovskaia T et al (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 22:3403–8. doi:10.1101/gad.1741408
Guppy BJ, McManus KJ (2015) Mitotic accumulation of dimethylated lysine 79 of histone h3 is important for maintaining genome integrity during mitosis in human cells. Genetics 199:423–33. doi:10.1534/genetics.114.172874
He N, Chan CK, Sobhian B et al (2011) Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A 108:E636–45. doi:10.1073/pnas.1107107108
Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723. doi:10.1016/j.cell.2015.09.053
Ho L-L, Sinha A, Verzi M et al (2013) DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol Cell Biol 33:1735–1745. doi:10.1128/MCB.01463-12
Holt MT, David Y, Pollock S et al (2015) Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci U S A 112:10365–10370. doi:10.1073/pnas.1504483112
Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:261–270. doi:10.1093/nar/gkr1122
Huff JT, Plocik AM, Guthrie C, Yamamoto KR (2010) Reciprocal intronic and exonic histone modification regions in humans. Nat Struct Mol Biol 17:1495–9. doi:10.1038/nsmb.1924
Huyen Y, Zgheib O, Ditullio RA et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–11. doi:10.1038/nature03114
Im H, Park C, Feng Q et al (2003) Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J Biol Chem 278:18346–52. doi:10.1074/jbc.M300890200
Jack APM, Hake SB (2014) Getting down to the core of histone modifications. Chromosoma 123:355–371. doi:10.1007/s00412-014-0465-x
Janzen CJ, Hake SB, Lowell JE, Cross GAM (2006) Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei. Mol Cell 23:497–507. doi:10.1016/j.molcel.2006.06.027
Jones B, Su H, Bhat A et al (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190. doi:10.1371/journal.pgen.1000190
Jonkers I, Kwak H, Lis JT (2014) Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3:e02407. doi:10.7554/eLife.02407
Kim J, Guermah M, McGinty RK et al (2009) RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137:459–71. doi:10.1016/j.cell.2009.02.027
Kim J, Hake SB, Roeder RG (2005) The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20:759–70. doi:10.1016/j.molcel.2005.11.012
Kim S-K, Jung I, Lee H et al (2012a) Human histone H3K79 methyltransferase DOT1L methyltransferase binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 287:39698–39709. doi:10.1074/jbc.M112.384057
Kim W, Choi M, Kim J-E (2014) The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 13:726–38. doi:10.4161/cc.28104
Kim W, Kim R, Park G et al (2012b) Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 287:5588–99. doi:10.1074/jbc.M111.328138
Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24:347–57. doi:10.1038/sj.emboj.7600516
Krivtsov AV, Feng Z, Lemieux ME et al (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14:355–68. doi:10.1016/j.ccr.2008.10.001
Kryczek I, Lin Y, Nagarsheth N et al (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772–84. doi:10.1016/j.immuni.2014.03.010
Kuntimaddi A, Achille NJ, Thorpe J et al (2015) Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 di- and tri-methylation on target genes and transformation potential. Cell Rep 11:808–820. doi:10.1016/j.celrep.2015.04.004
Leach BI, Kuntimaddi A, Schmidt CR et al (2013) Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21:176–183. doi:10.1016/j.str.2012.11.011
Leroy G, Dimaggio PA, Chan EY et al (2013) A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin 6:20. doi:10.1186/1756-8935-6-20
Li Y, Wen H, Xi Y et al (2014) AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159:558–571. doi:10.1016/j.cell.2014.09.049
Lin Y-H, Kakadia PM, Chen Y et al (2009) Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 114:651–8. doi:10.1182/blood-2009-03-209395
Lu X, Simon MD, Chodaparambil JV et al (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–4. doi:10.1038/nsmb.1489
Margaritis T, Oreal V, Brabers N et al (2012) Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3’-end antisense transcription. PLoS Genet 8:e1002952. doi:10.1371/journal.pgen.1002952
Marson A, Levine SS, Cole MF et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–33. doi:10.1016/j.cell.2008.07.020
McGinty RK, Kim J, Chatterjee C et al (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–6. doi:10.1038/nature06906
McGinty RK, Köhn M, Chatterjee C et al (2009) Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem Biol 4:958–68. doi:10.1021/cb9002255
McLean CM, Karemaker ID, van Leeuwen F (2014) The emerging roles of DOT1L in leukemia and normal development. Leukemia 28:2131–8. doi:10.1038/leu.2014.169
Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27:2165–2176. doi:10.1038/leu.2013.135
Milne TA, Kim J, Wang GG et al (2010) Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 38:853–63. doi:10.1016/j.molcel.2010.05.011
Min J, Feng Q, Li Z et al (2003) Structure of the catalytic domain of human DOT1L, a Non-SET domain nucleosomal histone methyltransferase. Cell 112:711–723. doi:10.1016/S0092-8674(03)00114-4
Minsky N, Shema E, Field Y et al (2008) Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10:483–8. doi:10.1038/ncb1712
Mohan M, Herz H-M, Takahashi Y-H et al (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24:574–89. doi:10.1101/gad.1898410
Mueller D, Bach C, Zeisig D et al (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–54. doi:10.1182/blood-2007-05-090514
Mueller D, García-Cuéllar M-P, Bach C et al (2009) Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 7:e1000249. doi:10.1371/journal.pbio.1000249
Muntean AG, Tan J, Sitwala K et al (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17:609–21. doi:10.1016/j.ccr.2010.04.012
Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–27. doi:10.1038/nsmb.2436
Nakamura T, Alder H, Gu Y et al (1993) Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci U S A 90:4631–5. doi:10.1073/pnas.90.10.4631
Nguyen AT, Xiao B, Neppl RL et al (2011) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25:263–274. doi:10.1101/gad.2018511
Nguyen UTT, Bittova L, Müller MM et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840. doi:10.1038/nmeth.3022
O’Connor CM, DiMaggio PA, Shenk T, Garcia BA (2014) Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus (HCMV) infection. Mol Cell Proteomics 13:2399–2410. doi:10.1074/mcp.M114.039792
Okada Y, Feng Q, Lin Y et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121:167–78. doi:10.1016/j.cell.2005.02.020
Oksenych V, Zhovmer A, Ziani S et al (2013) Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet 9:e1003611. doi:10.1371/journal.pgen.1003611
Onder TT, Kara N, Cherry A et al (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602. doi:10.1038/nature10953
Ontoso D, Acosta I, van Leeuwen F et al (2013) Dot1-dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint effector kinase by regulating the Hop1 adaptor. PLoS Genet 9:e1003262. doi:10.1371/journal.pgen.1003262
Ontoso D, Kauppi L, Keeney S, San-Segundo PA (2014) Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Chromosoma 123:147–164. doi:10.1007/s00412-013-0438-5
Ooga M, Inoue A, Kageyama S et al (2008) Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod 78:413–24. doi:10.1095/biolreprod.107.063453
Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18. doi:10.1038/nrm3719
Park G, Gong Z, Chen J, Kim J-E (2010) Characterization of the DOT1L network: implications of diverse roles for DOT1L. Protein J 29:213–223. doi:10.1007/s10930-010-9242-8
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–12. doi:10.1002/jcc.20084
Pokholok DK, Harbison CT, Levine S et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–27. doi:10.1016/j.cell.2005.06.026
Reisenauer MR, Anderson M, Huang L et al (2009) AF17 competes with AF9 for binding to Dot1a to up-regulate transcription of epithelial Na + channel alpha. J Biol Chem 284:35659–69. doi:10.1074/jbc.M109.038448
Reisenauer MR, Wang SW, Xia Y, Zhang W (2010) Dot1a contains three nuclear localization signals and regulates the epithelial Na + channel (ENaC) at multiple levels. Am J Physiol Renal Physiol 299:F63–76. doi:10.1152/ajprenal.00105.2010
Rothbart SB, Dickson BM, Raab JR et al (2015) An interactive database for the assessment of histone antibody specificity. Mol Cell 59:502–511. doi:10.1016/j.molcel.2015.06.022
Rubnitz J, Morrissey J, Savage P, Cleary M (1994) ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 84:1747–1752
Sabra M, Texier P, El Maalouf J, Lomonte P (2013) The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3. J Cell Sci 126:3664–77. doi:10.1242/jcs.126003
San-Segundo PA, Roeder GS (2000) Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell 11:3601–3615. doi:10.1091/mbc.11.10.3601
Sawada K, Yang Z, Horton JR et al (2004) Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J Biol Chem 279:43296–306. doi:10.1074/jbc.M405902200
Schübeler D, MacAlpine DM, Scalzo D et al (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18:1263–71. doi:10.1101/gad.1198204
Shanower GA, Muller M, Blanton JL et al (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169:173–84. doi:10.1534/genetics.104.033191
Smolle M, Workman JL (2013) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 1829:84–97. doi:10.1016/j.bbagrm.2012.08.008
Soria-Valles C, Osorio FG, Gutiérrez-Fernández A et al (2015) NF-κB activation impairs somatic cell reprogramming in ageing. Nat Cell Biol 17:1004–13. doi:10.1038/ncb3207
Steger DJ, Lefterova MI, Ying L et al (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–39. doi:10.1128/MCB.02076-07
Stein EM, Tallman MS (2015) Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L. Curr Opin Hematol 22:92–6. doi:10.1097/MOH.0000000000000123
Stulemeijer IJE, De Vos D, van Harten K et al (2015) Dot1 histone methyltransferases share a distributive mechanism but have highly diverged catalytic properties. Sci Rep 5:9824. doi:10.1038/srep09824
Sun Z-W, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–8. doi:10.1038/nature00883
Suzuki H, Takatsuka S, Akashi H et al (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Res 71:5646–5658. doi:10.1158/0008-5472.CAN-11-1076
Sweet SMM, Li M, Thomas PM et al (2010) Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem 285:32778–86. doi:10.1074/jbc.M110.145094
Tan J, Jones M, Koseki H et al (2011) CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 20:563–575. doi:10.1016/j.ccr.2011.09.008
Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708. doi:10.1038/nrm3890
Tong Q, Cui G, Botuyan MV et al (2015) Structural plasticity of methyllysine recognition by the tandem tudor domain of 53BP1. Structure 23:312–21. doi:10.1016/j.str.2014.11.013
Tsunaka Y, Kajimura N, Tate S, Morikawa K (2005) Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res 33:3424–3434. doi:10.1093/nar/gki663
Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26:9185–95. doi:10.1128/MCB.01529-06
Van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756. doi:10.1016/S0092-8674(02)00759-6
Veloso A, Kirkconnell KS, Magnuson B et al (2014) Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res 24:896–905. doi:10.1101/gr.171405.113
Vlaming H, van Leeuwen F (2012) Crosstalk between aging and the epigenome. Epigenomics 4:5–7. doi:10.2217/epi.11.113
Vlaming H, van Welsem T, de Graaf EL et al (2014) Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo. EMBO Rep 15:1077–1084. doi:10.15252/embr.201438793
Wagner T, Robaa D, Sippl W, Jung M (2014) Mind the methyl: methyllysine binding proteins in epigenetic regulation. ChemMedChem 9:466–83. doi:10.1002/cmdc.201300422
Wakeman TP, Wang Q, Feng J, Wang X-F (2012) Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J 31:2169–81. doi:10.1038/emboj.2012.50
Wang E, Kawaoka S, Yu M et al (2013) Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci U S A 110:3901–6. doi:10.1073/pnas.1301045110
Wang X, Gao W, Ma X et al (2014) Dot1L mediated histone H3 lysine79 methylation is essential to meiosis progression in mouse oocytes. Neuro Endocrinol Lett 35:523–30
Wang Z, Zang C, Rosenfeld JA et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903. doi:10.1038/ng.154
Woo Park J, Kim K-B, Kim J-Y et al (2015) RE-IIBP methylates H3K79 and induces MEIS1-mediated apoptosis via H2BK120 ubiquitination by RNF20. Sci Rep 5:12485. doi:10.1038/srep12485
Wu H, Chen L, Zhang X et al (2013) Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One 8:e53342. doi:10.1371/journal.pone.0053342
Wu H, Zeng H, Lam R et al (2011a) Structural and histone binding ability characterizations of human PWWP domains. PLoS One 6:e18919. doi:10.1371/journal.pone.0018919
Wu L, Li L, Zhou B et al (2014) H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 54:920–31. doi:10.1016/j.molcel.2014.04.013
Wu L, Zee BM, Wang Y et al (2011b) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 43:132–44. doi:10.1016/j.molcel.2011.05.015
Wu R, Yue Y, Zheng X, Li H (2015) Molecular basis for histone N-terminal methylation by NRMT1. Genes Dev 29:2337–42. doi:10.1101/gad.270926.115
Wysocki R, Javaheri A, Allard S et al (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25:8430–43. doi:10.1128/MCB.25.19.8430-8443.2005
Yang L, Lin C, Jin C et al (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. doi:10.1038/nature12451
Yao X, Tang Z, Fu X, et al. (2015) The mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination. EMBO J e201591279. doi: 10.15252/embj.201591279
Yokoyama A, Lin M, Naresh A et al (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17:198–212. doi:10.1016/j.ccr.2009.12.040
Yu W, Chory EJ, Wernimont AK et al (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3:1288. doi:10.1038/ncomms2304
Zee BM, Levin RS, Xu B et al (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285:3341–50. doi:10.1074/jbc.M109.063784
Zhang L, Deng L, Chen F et al (2014) Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer. Oncotarget 5:10665–10677. doi:10.18632/oncotarget.2496
Zhang W, Hayashizaki Y, Kone BC (2004) Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J 377:641–51. doi:10.1042/BJ20030839
Zhang W, Xia X, Jalal DI et al (2006a) Aldosterone-sensitive repression of ENaCalpha transcription by a histone H3 lysine-79 methyltransferase. Am J Physiol Cell Physiol 290:C936–46. doi:10.1152/ajpcell.00431.2005
Zhang W, Xia X, Reisenauer MR et al (2006b) Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem 281:18059–68. doi:10.1074/jbc.M601903200
Zhang W, Xia X, Reisenauer MR et al (2007) Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na + channel alpha. J Clin Invest 117:773–83. doi:10.1172/JCI29850
Zhang Z, Zhang MQ (2011) Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes. BMC Bioinformatics 12:155. doi:10.1186/1471-2105-12-155
Zhu B, Mandal SS, Pham A-D et al (2005a) The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev 19:1668–73. doi:10.1101/gad.1292105
Zhu B, Zheng Y, Pham A-D et al (2005b) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20:601–11. doi:10.1016/j.molcel.2005.09.025
Acknowledgments
We thank Tessy Korthout for critical reading of the manuscript. This work was supported by the Netherlands Organisation for Scientific Research [NWO-VICI-016.130.627 to FVL] and the Dutch Cancer Society [KWF NKI2014-7232 and NKI2009-4511 to FVL].
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Human and animal rights
The article does not contain any studies with human participants or animals performed by any of the authors.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(XLSX 11 kb)
Rights and permissions
About this article
Cite this article
Vlaming, H., van Leeuwen, F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 125, 593–605 (2016). https://doi.org/10.1007/s00412-015-0570-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00412-015-0570-5