Skip to main content
Log in

Replication-compromised cells require the mitotic checkpoint to prevent tetraploidization

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Replication stress often induces chromosome instability. In this study, we explore which factors in replication-compromised cells promote abnormal chromosome ploidy. We expressed mutant forms of either polymerase α (Polα) or polymerase δ (Polδ) in normal human fibroblasts to compromise DNA replication. Cells expressing the mutant Polα-protein failed to sustain mitotic arrest and, when propagated progressively, down-regulated Mad2 and BubR1 and accumulated 4N-DNA from the 2N-DNA cells. Significantly, a population of these cells became tetraploids. The Polα mutant expressing cells also exhibited elevated cellular senescence markers, suggesting as a mechanism to limit proliferation of the tetraploids. Expression of the Polδ mutant also caused cells to accumulate 4N-DNA. In contrast to the Polα mutant expressing cells, the Polδ mutant expressing cells expressed sufficient levels of Mad2, BubR1, and cyclin B1 to sustain mitotic arrest, and these cells had normal chromosome ploidy. Together, these results suggest that replication-compromised cells depend on the mitotic checkpoint to prevent mitotic slippage that could result in tetraploidization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328

    CAS  PubMed  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  • Brito DA, Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16:1194–1200

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11:S27–S31

    CAS  PubMed  Google Scholar 

  • Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  • Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760

    Article  CAS  PubMed  Google Scholar 

  • Dahlen M, Sunnerhagen P, Wang TS (2003) Replication proteins influence the maintenance of telomere length and telomerase protein stability. Mol Cell Biol 23:3031–3042

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang YM, Xu M, Rao CV (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445

    Article  CAS  PubMed  Google Scholar 

  • Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez PJ, Wang TS-F (2003) Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165:65–81

    CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  CAS  PubMed  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  CAS  PubMed  Google Scholar 

  • Miles J, Formosa T (1992) Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase. Proc Natl Acad Sci USA 89:1276–1280

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Lowe SW (2005) Senescence comes of age. Nat Med 11:920–922

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  CAS  PubMed  Google Scholar 

  • Pellman D (2007) Cell biology: aneuploidy and cancer. Nature 446:38–39

    Article  CAS  PubMed  Google Scholar 

  • Prasanth SG, Prasanth KV, Stillman B (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297:1026–1031

    Google Scholar 

  • Rajagopalan H, Lengauer C (2004a) Aneuploidy and cancer. Nature 432:338–341

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Lengauer C (2004b) CIN-ful cancers. Cancer Chemother Pharmacol 54(Suppl 1):S65–S568

    PubMed  Google Scholar 

  • Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Campisi J (2009) When DNA damage goes invisible. Cell Cycle 8:3632–3633

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Baek KH, Jeon AH, Park MT, Lee SJ, Kang CM, Lee HS, Yoo SH, Chung DH, Sung YC et al (2003) Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell 4:483–497

    Article  CAS  PubMed  Google Scholar 

  • Stillman B (2008) DNA polymerases at the replication fork in eukaryotes. Mol Cell 30:259–260

    Article  CAS  PubMed  Google Scholar 

  • Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:3859–3866

    Article  CAS  PubMed  Google Scholar 

  • Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5:45–54

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Kubota Y, Tsujimura T, Kumano M, Masai H, Takisawa H (2009) Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts. Genes Cells 14:949–963

    Article  CAS  PubMed  Google Scholar 

  • Uetake Y, Sluder G (2004) Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 165:609–615

    Article  CAS  PubMed  Google Scholar 

  • Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  CAS  PubMed  Google Scholar 

  • Wittmeyer J, Formosa T (1997) The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol 17:4178–4190

    CAS  PubMed  Google Scholar 

  • Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6:6

    Article  PubMed  Google Scholar 

  • Yaswen P, Campisi J (2007) Oncogene-induced senescence pathways weave an intricate tapestry. Cell 128:233–234

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa-Sugata N, Masai H (2009) Roles of human AND-1 in chromosome transactions in S phase. J Biol Chem 284:20718–20728

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wang TS-F (2004) A coordinated temporal interplay of nucleosome reorganization factor, sisiter chromatin cohesion factor, and DNA polymerase α facilitates DNA replication. Mol Cell Biol 24:9568–9579

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21:2288–2299

    Article  CAS  PubMed  Google Scholar 

  • Zimmet J, Ravid K (2000) Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte–platelet system. Exp Hematol 28:3–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guowei Fang of Stanford University for antibodies against Mad2 and BubR1. This work is supported by grants from National Cancer Institute of National Institutes of Health. Z. Z. is partially supported by the Dean’s Fellowship of Stanford University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa S.-F. Wang.

Additional information

Communicated by J. Diffley

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Arora, S., Zhou, Y. et al. Replication-compromised cells require the mitotic checkpoint to prevent tetraploidization. Chromosoma 120, 73–82 (2011). https://doi.org/10.1007/s00412-010-0292-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0292-7

Keywords

Navigation