Skip to main content
Log in

Inositol polyphosphates: a new frontier for regulating gene expression

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Highly phosphorylated, soluble inositides are an emerging family of potential eukaryotic second messengers. The mechanisms for generating an outstanding diversity of mono- and pyrophosphorylated inositides have been recently elucidated and require a series of conserved lipases, kinases, and phosphatases. With several of the inositol kinases and the phospholipase C having access to the nucleus, roles for inositides in nuclear functions have been suggested. In support of this hypothesis, multiple studies have revealed the protein machines that are modulated by these inositides and found specific roles in nuclear physiology. In this paper, we review a novel paradigm for regulating gene expression at distinct steps by different inositide isomers. We discuss discoveries showing inositol polyphosphate regulation of gene expression at the level of transcription, chromatin remodeling, messenger ribonucleic acid (mRNA) editing, and mRNA export. Recent structural studies of inositol polyphosphate-binding proteins suggest the inositides modulate protein function as essential structural cofactors, triggers for allosteric or induced fit structural changes, and direct antagonistic competitors for other inositide ligands. We propose that the cell orchestrates the localized production of soluble inositol polyphosphates and inositol pyrophosphates to direct decisive and rapid signaling events. These insights also illustrate how extracellular stimuli might faithfully trigger the correct synchrony between gene expression steps and coordinate nuclear responses to changes in cellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcazar-Roman AR, Tran EJ, Guo S, Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8:711–716

    PubMed  CAS  Google Scholar 

  • Almer A, Rudolph H, Hinnen A, Horz W (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696

    PubMed  CAS  Google Scholar 

  • Audhya A, Emr SD (2003) Regulation of PI4,5P2 synthesis by nuclear–cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22:4223–4236

    PubMed  CAS  Google Scholar 

  • Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005) Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem 280:25127–25133

    PubMed  CAS  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    PubMed  CAS  Google Scholar 

  • Bernard A, Khrestchatisky M (1994) Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development. J Neurochem 62:2057–2060

    Article  PubMed  CAS  Google Scholar 

  • Boronenkov IV, Loijens JC, Umeda M, Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560

    PubMed  CAS  Google Scholar 

  • Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700

    PubMed  CAS  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    PubMed  CAS  Google Scholar 

  • Bunce CM, French PJ, Allen P, Mountford JC, Moor B, Greaves MF, Michell RH, Brown G (1993) Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem J 289:667–673

    PubMed  CAS  Google Scholar 

  • Bunce MW, Bergendahl K, Anderson RA (2006) Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 1761:560–569

    PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    PubMed  CAS  Google Scholar 

  • Byrum J, Jordan S, Safrany ST, Rodgers W (2004) Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res 32:2776–2784

    PubMed  CAS  Google Scholar 

  • Carroll AS, O’Shea EK (2002) Pho85 and signaling environmental conditions. Trends Biochem Sci 27:87–93

    PubMed  CAS  Google Scholar 

  • Chamberlain PP, Sandberg ML, Sauer K, Cooke MP, Lesley SA, Spraggon G (2005) Structural insights into enzyme regulation for inositol 1,4,5-trisphosphate 3-kinase B. Biochemistry 44:14486–14493

    PubMed  CAS  Google Scholar 

  • Chamberlain PP, Qian X, Stiles AR, Cho J, Jones DH, Lesley SA, Grabau EA, Shears SB, Spraggon G (2007) Integration of inositol phosphate signaling pathways via human ITPK1. J Biol Chem 282:28117–28125

    PubMed  CAS  Google Scholar 

  • Cheek S, Zhang H, Grishin NV (2002) Sequence and structure classification of kinases. J Mol Biol 320:855–881

    PubMed  CAS  Google Scholar 

  • Coady MJ, Wallendorff B, Gagnon DG, Lapointe JY (2002) Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277:35219–35224

    PubMed  CAS  Google Scholar 

  • Cocco L, Miscia S, Cataldi A, Capitani S, Matteucci A, Martelli AM, Manzoli FA (1987) Response of isolated nuclei to phospholipid vesicles: effect of phosphatidylserine on alpha and beta DNA polymerase activity. Cell Biol Int Rep 11:397–403

    PubMed  CAS  Google Scholar 

  • Cocco L, Capitani S, Maraldi NM, Mazzotti G, Barnabei O, Rizzoli R, Gilmour RS, Wirtz KW, Rhee SG, Manzoli FA (1998) Inositides in the nucleus: taking stock of PLC beta 1. Adv Enzyme Regul 38:351–363

    PubMed  CAS  Google Scholar 

  • Cole CN, Scarcelli JJ (2006) Unravelling mRNA export. Nat Cell Biol 8:645–647

    PubMed  CAS  Google Scholar 

  • Culbertson MR, Henry SA (1975) Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80:23–40

    PubMed  CAS  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10:3207–3214

    PubMed  CAS  Google Scholar 

  • Dolhofer R, Wieland OH (1987) Enzymatic assay of myo-inositol in serum. J Clin Chem Clin Biochem 25:733–736

    PubMed  CAS  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990

    PubMed  CAS  Google Scholar 

  • Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13:225–231

    PubMed  CAS  Google Scholar 

  • Ebbert R, Birkmann A, Schuller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32:741–751

    PubMed  CAS  Google Scholar 

  • El Alami M, Messenguy F, Scherens B, Dubois E (2003) Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 49:457–468

    PubMed  Google Scholar 

  • El Bakkoury M, Dubois E, Messenguy F (2000) Recruitment of the yeast MADS-box proteins, ArgRI and Mcm1 by the pleiotropic factor ArgRIII is required for their stability. Mol Microbiol 35:15–31

    PubMed  Google Scholar 

  • Fascher KD, Schmitz J, Horz W (1990) Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J 9:2523–2528

    PubMed  CAS  Google Scholar 

  • Feng Y, Wente SR, Majerus PW (2001) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci USA 98:875–879

    PubMed  CAS  Google Scholar 

  • Flanagan CA, Thorner J (1992) Purification and characterization of a soluble phosphatidylinositol 4-kinase from the yeast Saccharomyces cerevisiae. J Biol Chem 267:24117–24125

    PubMed  CAS  Google Scholar 

  • Flick JS, Thorner J (1993) Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13:5861–5876

    PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    PubMed  CAS  Google Scholar 

  • Frederick JP, Mattiske D, Wofford JA, Megosh LC, Drake LY, Chiou ST, Hogan BL, York JD (2005) An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc Natl Acad Sci USA 102:8454–8459

    PubMed  CAS  Google Scholar 

  • French PJ, Bunce CM, Stephens LR, Lord JM, McConnell FM, Brown G, Creba JA, Michell RH (1991) Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes. Proc Biol Sci 245:193–201

    PubMed  CAS  Google Scholar 

  • Glennon MC, Shears SB (1993) Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J 293:583–590

    PubMed  CAS  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    PubMed  CAS  Google Scholar 

  • Gonzales ML, Anderson RA (2006) Nuclear phosphoinositide kinases and inositol phospholipids. J Cell Biochem 97:252–260

    PubMed  CAS  Google Scholar 

  • Gonzalez B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL (2004) Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol Cell 15:689–701

    PubMed  CAS  Google Scholar 

  • Guan G, Dai P, Shechter I (2003) cDNA cloning and gene expression analysis of human myo-inositol 1-phosphate synthase. Arch Biochem Biophys 417:251–259

    PubMed  CAS  Google Scholar 

  • Guha N, Desai P, Vancura A (2007) Plc1p is required for SAGA recruitment and derepression of Sko1p-regulated genes. Mol Biol Cell 18:2419–2428

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    PubMed  CAS  Google Scholar 

  • Hieronymus H, Silver PA (2004) A systems view of mRNP biology. Genes Dev 18:28845–22860

    Google Scholar 

  • Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284:1527–1530

    PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    PubMed  CAS  Google Scholar 

  • Holmes W, Jogl G (2006) Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity. J Biol Chem 281:38109–38116

    PubMed  CAS  Google Scholar 

  • Huang KN, Symington LS (1995) Suppressors of a Saccharomyces cerevisiae pkc1 mutation identify alleles of the phosphatase gene PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 141:1275–1285

    PubMed  CAS  Google Scholar 

  • Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH, Tsoukas CD, Cooke MP, Sauer K (2007) Positive regulation of Itk PH domain function by soluble IP4. Science 316:886–889

    PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    PubMed  CAS  Google Scholar 

  • Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360

    PubMed  CAS  Google Scholar 

  • Irvine RF (2005) Inositide evolution—towards turtle domination? J Physiol 566:295–300

    PubMed  CAS  Google Scholar 

  • Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML (2004) Human 1-D-myo-inositol-3-phosphate synthase is functional in yeast. J Biol Chem 279:21759–21765

    PubMed  CAS  Google Scholar 

  • Kersting MC, Boyette M, Massey JH, Ryals PE (2003) Identification of the inositol isomers present in Tetrahymena. J Eukaryot Microbiol 50:164–168

    PubMed  CAS  Google Scholar 

  • Komeili A, O’Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980

    PubMed  CAS  Google Scholar 

  • Kouzuma T, Takahashi M, Endoh T, Kaneko R, Ura N, Shimamoto K, Watanabe N (2001) An enzymatic cycling method for the measurement of myo-inositol in biological samples. Clin Chim Acta 312:143–151

    PubMed  CAS  Google Scholar 

  • Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006) Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 188:8054–8061

    PubMed  CAS  Google Scholar 

  • Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem 267:6297–6301

    PubMed  CAS  Google Scholar 

  • Lai K, McGraw P (1994) Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269:2245–2251

    PubMed  CAS  Google Scholar 

  • Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin–CDK–CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112

    PubMed  CAS  Google Scholar 

  • Leyman A, Pouillon V, Bostan A, Schurmans S, Erneux C, Pesesse X (2007) The absence of expression of the three isoenzymes of the inositol 1,4,5-trisphosphate 3-kinase does not prevent the formation of inositol pentakisphosphate and hexakisphosphate in mouse embryonic fibroblasts. Cell Signal 19:1497–1504

    PubMed  CAS  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    PubMed  CAS  Google Scholar 

  • Luo HR, Saiardi A, Yu H, Nagata E, Ye K, Snyder SH (2002) Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry 41:2509–2515

    PubMed  CAS  Google Scholar 

  • Luo HR, Huang YE, Chen JC, Saiardi A, Iijima M, Ye K, Huang Y, Nagata E, Devreotes P, Snyder SH (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114:559–572

    PubMed  CAS  Google Scholar 

  • Ma Y, Lieber MR (2002) Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J Biol Chem 277:10756–10759

    PubMed  CAS  Google Scholar 

  • Macbeth MR, Schubert HL, VanDemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 306:1534–1539

    Google Scholar 

  • MacGregor LC, Matschinsky FM (1984) An enzymatic fluorimetric assay for myo-inositol. Anal Biochem 141:382–389

    PubMed  CAS  Google Scholar 

  • Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J Biol Chem 274:10669–10672

    PubMed  CAS  Google Scholar 

  • Martelli AM, Gilmour RS, Neri LM, Manzoli L, Corps AN, Cocco L (1991) Mitogen-stimulated events in nuclei of Swiss 3T3 cells. Evidence for a direct link between changes of inositol lipids, protein kinase C requirement and the onset of DNA synthesis. FEBS Lett 283:243–246

    PubMed  CAS  Google Scholar 

  • Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature 358:242–245

    PubMed  CAS  Google Scholar 

  • Meier UT (1996) Comparison of the rat nucleolar protein nopp140 with its yeast homolog SRP40. Differential phosphorylation in vertebrates and yeast. J Biol Chem 271:19376–19384

    PubMed  CAS  Google Scholar 

  • Michell RH (2007) Evolution of the diverse biological roles of inositols. Biochem Soc Symp 74:223–246

    PubMed  CAS  Google Scholar 

  • Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281:9812–9823

    PubMed  CAS  Google Scholar 

  • Miyashita M, Shugyo M, Nikawa J (2003) Mutational analysis and localization of the inositol transporters of Saccharomyces cerevisiae. J Biosci Bioeng 96:291–297

    PubMed  CAS  Google Scholar 

  • Miller GJ, Hurley JH (2004) Crystal structure of the catalytic core of inositol 1,4,5-trisphosphate 3-kinase. Mol Cell 15:703–711

    PubMed  CAS  Google Scholar 

  • Miller AL, Suntharalingam M, Johnson SL, Audhya A, Emr SD, Wente SR (2004) Cytoplasmic inositol hexakisphosphate production Is sufficient for mediating the Gle1-mRNA export pathway. J Biol Chem 279:51022–51032

    PubMed  CAS  Google Scholar 

  • Miller GJ, Wilson MP, Majerus PW, Hurley JH (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase. Mol Cell 18:201–212

    PubMed  CAS  Google Scholar 

  • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775

    PubMed  CAS  Google Scholar 

  • Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316:106–109

    PubMed  CAS  Google Scholar 

  • Murray M, Greenberg ML (1997) Regulation of inositol monophosphatase in Saccharomyces cerevisiae. Mol Microbiol 25:541–546

    PubMed  CAS  Google Scholar 

  • Nikawa J, Yamashita S (1982) Yeast mutant defective in synthesis of phosphatidylinositol. Isolation and characterization of a CDPdiacylglycerol–inositol 3-phosphatidyltransferase Km mutant. Eur J Biochem 125:445–451

    PubMed  CAS  Google Scholar 

  • Nikawa J, Tsukagoshi Y, Yamashita S (1991) Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 266:11184–11191

    PubMed  CAS  Google Scholar 

  • Nikawa J, Hosaka K, Yamashita S (1993) Differential regulation of two myo-inositol transporter genes of Saccharomyces cerevisiae. Mol Microbiol 10:955–961

    PubMed  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    PubMed  CAS  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    PubMed  CAS  Google Scholar 

  • Ongusaha PP, Hughes PJ, Davey J, Michell RH (1998) Inositol hexakisphosphate in Schizosaccharomyces pombe: synthesis from Ins(1,4,5)P3 and osmotic regulation. Biochem J 335:671–679

    PubMed  CAS  Google Scholar 

  • Osborne SL, Thomas CL, Gschmeissner S, Schiavo G (2001) Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114:2501–2511

    PubMed  CAS  Google Scholar 

  • Otegui MS, Capp R, Staehelin LA (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327

    PubMed  CAS  Google Scholar 

  • Paul MS, Bass BL (1998) Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J 17:1120–1127

    PubMed  CAS  Google Scholar 

  • Payne WE, Fitzgerald-Hayes M (1993) A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol 13:4351–4364

    PubMed  CAS  Google Scholar 

  • Pennaneach V, Kolodner RD (2004) Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat Genet 36:612–617

    PubMed  CAS  Google Scholar 

  • Perera NM, Michell RH, Dove SK (2004) Hypo-osmotic stress activates Plc1p-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol Hexakisphosphate accumulation in yeast. J Biol Chem 279:5216–5226

    PubMed  CAS  Google Scholar 

  • Pesesse X, Choi K, Zhang T, Shears SB (2004) Signaling by higher inositol polyphosphates. Synthesis of bisdiphosphoinositol tetrakisphosphate (“InsP8”) is selectively activated by hyperosmotic stress. J Biol Chem 279:43378–43381

    PubMed  CAS  Google Scholar 

  • Peterson CL, Kruger W, Herskowitz I (1991) A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64:1135–1143

    PubMed  CAS  Google Scholar 

  • Pittet D, Schlegel W, Lew DP, Monod A, Mayr GW (1989) Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J Biol Chem 264:18489–18493

    PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    PubMed  CAS  Google Scholar 

  • Poyner DR, Cooke F, Hanley MR, Reynolds DJ, Hawkins PT (1993) Characterization of metal ion-induced [3H]inositol hexakisphosphate binding to rat cerebellar membranes. J Biol Chem 268:1032–1038

    PubMed  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BD, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer, Norwell, pp 441–477

    Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    PubMed  CAS  Google Scholar 

  • Resnick AC, Snowman AM, Kang BN, Hurt KJ, Snyder SH, Saiardi A (2005) Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci USA 102:12783–12788

    PubMed  CAS  Google Scholar 

  • Robinson KS, Lai K, Cannon TA, McGraw P (1996) Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation. Mol Biol Cell 7:81–89

    PubMed  CAS  Google Scholar 

  • Romero C, Desai P, DeLillo N, Vancura A (2006) Expression of FLR1 transporter requires phospholipase C and is repressed by Mediator. J Biol Chem 281:5677–5685

    PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    PubMed  CAS  Google Scholar 

  • Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    PubMed  CAS  Google Scholar 

  • Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274:21735–21740

    PubMed  CAS  Google Scholar 

  • Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9:1323–1326

    PubMed  CAS  Google Scholar 

  • Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105

    PubMed  CAS  Google Scholar 

  • Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci USA 102:1911–1914

    PubMed  CAS  Google Scholar 

  • Sarmah B, Latimer AJ, Appel B, Wente SR (2005) Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 9:133–145

    PubMed  CAS  Google Scholar 

  • Scherer J (1850) Ueber eine neue, aus dem Muskelfleische gew onnene Zuckerart. Liebigs Ann Chem 73:322–328

    Google Scholar 

  • Scherer J (1852) Ueber den Inosit. Liebigs Ann Chem 81:375

    Google Scholar 

  • Seeds AM, Bastidas RJ, York JD (2005) Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae. J Biol Chem 280:27654–27661

    PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    PubMed  CAS  Google Scholar 

  • Stage-Zimmermann T, Schmidt U, Silver PA (2000) Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell 11:3777–3789

    PubMed  CAS  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116

    PubMed  CAS  Google Scholar 

  • Stolz LE, Huynh CV, Thorner J, York JD (1998) Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics 148:1715–1729

    PubMed  CAS  Google Scholar 

  • Strahl T, Thorner J (2007) Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771:353–404

    PubMed  CAS  Google Scholar 

  • Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979

    PubMed  CAS  Google Scholar 

  • Stuart JA, Anderson KL, French PJ, Kirk CJ, Michell RH (1994) The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells. Biochem J 303(Pt 2):517–525

    PubMed  CAS  Google Scholar 

  • Szwergold BS, Graham RA, Brown TR (1987) Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR. Biochem Biophys Res Commun 149:874–881

    PubMed  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    PubMed  CAS  Google Scholar 

  • Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B (2001) Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J 20:4467–4477

    PubMed  CAS  Google Scholar 

  • van Attikum H, Gasser SM (2005) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4:1011–1014

    PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777–788

    PubMed  Google Scholar 

  • Verbsky J, Lavine K, Majerus PW (2005a) Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression. Proc Natl Acad Sci USA 102:8448–8453

    PubMed  CAS  Google Scholar 

  • Verbsky JW, Chang SC, Wilson MP, Mochizuki Y, Majerus PW (2005b) The pathway for the production of inositol hexakisphosphate in human cells. J Biol Chem 280:1911–1920

    PubMed  CAS  Google Scholar 

  • Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8:668–676

    PubMed  CAS  Google Scholar 

  • Yoko-o T, Matsui Y, Yagisawa H, Nojima H, Uno I, Toh-e A (1993) The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci USA 90:1804–1808

    PubMed  CAS  Google Scholar 

  • York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 1761:552–559

    PubMed  CAS  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    PubMed  CAS  Google Scholar 

  • York SJ, Armbruster BN, Greenwell P, Petes TD, York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280:4264–4269

    PubMed  CAS  Google Scholar 

  • Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284

    PubMed  CAS  Google Scholar 

  • Yu H, Fukami K, Watanabe Y, Ozaki C, Takenawa T (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251:281–287

    PubMed  CAS  Google Scholar 

  • Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475

    PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues in the Wente and Hardy laboratories for insightful comments and technical assistance. Work in the laboratory is supported by NIH grants GM51219 and GM57438 to S.R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Wente.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcázar-Román, A.R., Wente, S.R. Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 117, 1–13 (2008). https://doi.org/10.1007/s00412-007-0126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0126-4

Keywords

Navigation