Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.

Similar content being viewed by others
References
Adams J (2000) Risk. Routledge, Taylor and Francis Group, London
AGIR (2013) Human Radiosensitivity. Report of the Independent Advisory Group on Ionising Radiation. Doc HPA, RCE-21. Advisory Group on Ionising Radiation, Chilton
Ariyoshi K, Takabatake T, Shinagawa M, Kadono K, Daino K, Imaoka T, Kakinuma S, NishimuraM SY (2014) Age dependence of hematopoietic progenitor survival and chemokine family gene induction after gamma irradiation in bone marrow tissue in C3H/He mice. Radiat Res 181(3):302–313. https://doi.org/10.1667/RR13466
Badie C, Dziwura S, Raffy C et al (2008) Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br J Cancer 98(11):1845–1851
Ban S, Konomi C, Iwakawa M, Yamada S, Ohno T, Tsuji H, Noda S, Matui Y, Harada Y, Cologne JB, Imai T (2004) Radiosensitivity of peripheral blood lymphocytes obtained from patients with cancers of the breast, head and neck or cervix as determined with a micronucleus assay. JRR 45:535–541
Ban S, Ishikawa K, Kawai S, Koyama-Saegusa K, Ishikawa A, Shimada Y, Inazawa J, Imai T (2005) Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression. JRR 46:43–50
Barnett GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, Dorling L, Coles CE, Dearnaley DP, Rosenstein BS, Vega A, Symonds P, Yarnold J, Baynes C, Michailidou K, Dennis J, Tyrer JP, Wilkinson JS, Gómez-Caamaño A, Tanteles GA, Platte R, Mayes R, Conroy D, Maranian M, Luccarini C, Gulliford SL, Sydes MR, Hall E, Haviland J, Misra V, Titley J, Bentzen SM, Pharoah PD, Burnet NG, Dunning AM, West CM (2014) A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother Oncol 111(2):178–185
Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9:134–142
Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3 Suppl):S3–9
Bergonie J, Tribondeau L (1959) Interpretation of some results of radiotherapy and an attempt at determining a logical technique of treatment. Radiat Res 11:587–588
Bernier MO, Baysson H, Pearce MS, Moissonnier M, Cardis E, Hauptmann M, Struelens L, Dabin J, Johansen C, Journy N, Laurier D, Blettner M, Le Cornet L, Pokora R, Gradowska P, Meulepas JM, Kjaerheim K, Istad T, Olerud H, Sovik A, Bosch de Basea M, Thierry-Chef I, Kaijser M, Nordenskjöld A, Berrington de Gonzalez A, Harbron RW, Kesminiene A (2018) Cohort profile: the EPI-CT study: a European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT. Int J Epidemiol. https://doi.org/10.1093/ije/dyy231
Berthel E, Foray N, Ferlazzo ML (2019) The nucleoshuttling of the atm protein: a unified model to describe the individual response to high and low-dose of radiation? Cancers 11:905. https://doi.org/10.3390/cancers11070905
Boice JD Jr, Miller RW (2009) Childhood and adult cancer after intrauterine exposure to ionizing radiation. Teratology 59:227–323
Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio M, Carosella ED (2005) Genetic and epigenetic features in radiation sensitivity. Part II: implications for clinical practice and radiation protection. Eur J Nucl Med Mol I 32:351–368
Bremer M, Klöpper K, Yamini P, Bendix-Waltes R, Dörk T, Karstens JH (2003) Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: no observation of increased radiation-induced acute or late effects. Radiother Oncol 69:155–160
Brennan RM, Miles JJ, Silins SL, Bell MJ, Burrows JM (2007) Burrows SR (2007) Predictable alphabeta T-cell receptor selection toward an HLA-B*3501-restricted human cytomegalovirus epitope. J Virol 81:7269–7273
Brennan RM, Petersen J, Neller MA, Miles JJ, Burrows JM, Smith C, McCluskey J, Khanna R, Rossjohn J, Burrows SR (2012) The impact of a large and frequent deletion in the human TCR β locus on antiviral immunity. J Immunol 188:2742–2748
Brenner AV, Preston DL, Sakata R, Sugiyama H, de Gonzalez AB, French B, Utada M, Cahoon EK, Sadakane A, Ozasa K, Grant EJ, Mabuchi K (2018) Incidence of breast cancer in the life span study of atomic bomb survivors: 1958–2009. Radiat Res 190(4):433–444. https://doi.org/10.1667/RR15015.1
Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM (2014) Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol 192:2689–2698
Britel M, Bourguignon M, Foray N (2018) The use of the term ‘radiosensitivity’ through history of radiation: from clarity to confusion. Int J Radiat Biol 94:1–31
Brooks JD, Boice JD, Jr., Stovall M, Reiner AS, Bernstein L, John EM, Lynch CF, Mellemkjaer L, Knight JA, Thomas DC, Haile RW, Smith SA, Capanu M, Bernstein JL, Shore RE, Group WC (2012) Reproductive status at first diagnosis influences risk of radiation-induced second primary contralateral breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys 84(4):917–924. https://doi.org/10.1016/j.ijrobp.2012.01.047
Bruheim K, Guren MG, Skovlund E, Hjermstad MJ, Dahl O, Frykholm G, Carlsen E, Tveit K (2010) Late side effects and quality of life after radiotherapy for rectal cancer. Int J Radiat Oncol Biology Phys 76:1005–1011
Burga A, Lehner B (2012) Beyond genotype to phenotype: why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J 279:3765–3775
Castiglioni F, Terenziani M, Carcangiu ML, Miliano R, Aiello P, Bertola L, Triulzi T, Gasparini P, Camerini T, Sozzi G, Fossati-Bellani F, Menard S, Tagliabue E (2007) Radiation effects on development of HER2-positive breast carcinomas. Clin Cancer Res 13(1):46–51. https://doi.org/10.1158/1078-0432.CCR-06-1490
Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15:34–48
Cooke R, Jones ME, Cunningham D, Falk SJ, Gilson D, Hancock BW, Harris SJ, Horwich A, Hoskin PJ, Illidge T, Linch DC, Lister TA, Lucraft HH, Radford JA, Stevens AM, Syndikus I, Williams MV, England and Wales Hodgkin Lymphoma Follow-up Group, Swerdlow AJ (2013) Breast cancer risk following Hodgkin lymphoma radiotherapy in relation to menstrual and reproductive factors. Br J Cancer 108(11):2399–2406. https://doi.org/10.1038/bjc.2013.219
Cosset JM, Hetnel M, Chargari C (2018) Second cancers after radiotherapy: update and recommendations. Radioprotection 53(2):101–105
Cucinotta FA, Durante M (2006) Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol 7:431–435
Cucinotta F (2010) Radiation Risk acceptability and limitations. https://three.jsc.nasa.gov/articles/AstronautRadLimitsFC.pdf. Accessed 21 Dec 2010
Cullings HM, Grant EJ, Egbert SD, Watanabe T, Oda T, Nakamura F et al (2017) DS02R1: improvements to atomic bomb survivors' input data and implementation of dosimetry system 2002 (DS02) and resulting changes in estimated doses. Health Phys 112(1):56–97. https://doi.org/10.1097/HP.0000000000000598
Czene K, Lichtenstein P, Hemminki K (2002) Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer 99:260–266
Dagoglu N, Karaman S, Caglar HB, Oral EN (2019) Abscopal effect of radiotherapy in the immunotherapy era: systematic review of reported cases. Cureus 11(2):e4103. https://doi.org/10.7759/cureus.4103
Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 34(1):251–266
Di Majo V, Coppola M, Rebessi S, Covelli V (1990) Age-related susceptibility of mouse liver to induction of tumors by neutrons. Radiat Res 124(2):227–234
Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70:130–139
Dores GM, Anderson WF, Beane Freeman LE, Fraumeni JF Jr, Curtis RE (2010) Risk of breast cancer according to clinicopathologic features among long-term survivors of Hodgkin's lymphoma treated with radiotherapy. Br J Cancer 103(7):1081–1084. https://doi.org/10.1038/sj.bjc.6605877
Egawa H, Furukawa K, Preston D, Funamoto S, Yonehara S, Matsuo T, Tokuoka S, Suyama A, Ozasa K, Kodama K, Mabuchi K (2012) Radiation and smoking effects on lung cancer incidence by histological types among atomic bomb survivors. Radiat Res 178(3):191–201
Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122
Fachal L, Gómez-Caamaño A, Barnett GC, Peleteiro P, Carballo AM, Calvo-Crespo P, Kerns SL, Sánchez-García M, Lobato-Busto R, Dorling L, Elliott RM, Dearnaley DP, Sydes MR, Hall E, Burnet NG, Carracedo Á, Rosenstein BS, West CM, Dunning AM, Vega A (2014) A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat Genet 46(8):891–894
Ferlazzo ML, Bourguignon M, Foray N (2017) Functional assays for individual radiosensitivity: a critical review. Radiat Oncol 27:310–315
Flockerzi E, Schanz S, Rübe CE (2014) Even low doses of radiation lead to DNA damage accumulation in lung tissue according to the genetically-defined DNA repair capacity. Radiother Oncol 111(2):212–218
Foray N, Colin C, Bourguignon M (2012) 100 years of individual radiosensitivity: how we have forgotten the evidence. Radiology 226(3):627–631
Foray N, Bourguignon M, Hamada N (2016) Individual response to ionizing radiation. Mutat Res 770:369–386
Fujiwara S, Carter RL, Akiyama M, Akahoshi M, Kodama K, Shimaoka K, Yamakido M (1994) Autoantibodies and immunoglobulins among atomic bomb survivors. Radiat Res 137(1):89–95
Fukahori M, Matsufuji N, Himukai T, Kanematsu N, Mizuno H, Fukumura A et al (2016) Estimation of late rectal normal tissue complication probability parameters in carbon ion therapy for prostate cancer. Radiother Oncol 118:136–140
Funatogawa I, Funatogawa T, Yano E (2013) Trends in smoking and lung cancer mortality in Japan, by birth cohort, 1949–2010. Bull World Health Organ 91:332–340
Furukawa K, Preston D, Lönn S, Funamoto S, Yonehara S, Matsuo T, Egawa H, Tokuoka S, Ozasa K, Kasagi F, Kodama K, Mabuchi K (2010) Radiation and smoking effects on lung cancer incidence among atomic-bomb survivors. Radiat Res 174:72–82
Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 132(5):1222–1226
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel M (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223. https://doi.org/10.1093/annonc/mdt303
Gomolka M, Blyth B, Bourguignon M, Badie C, Schmitz A, Talbot C, Hoeschen C, Salomaa S (2019) Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state. Int J Radiat Biol. https://doi.org/10.1080/09553002.2019.1642544
Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M et al (2017) Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res 187(5):513–537
Granzotto A, COPERNIC Project Investigators et al (2016) Influence of nucleoshuttling of the ATM protein in the healthy tissues response to radiation therapy: toward a molecular classification of human radiosensitivity. Int J Radiat Oncol Biol Phys 94:450–460
Guleria A, Chandna S (2016) ATM kinase: Much more than a DNA damage responsive protein. DNA Repair (Amst) 39:1–20
Hamasaki K et al (2016) Irradiation at different fetal stages results in different translocation frequencies in adult mouse thyroid cells. Radiat Res 186:360–366
Hill DA, Gilbert E, Dores GM, Gospodarowicz M, van Leeuwen FE, Holowaty E, Glimelius B, Andersson M, Wiklund T, Lynch CF, Van't Veer M, Storm H, Pukkala E, Stovall M, Curtis RE, Allan JM, Boice JD, Travis LB (2005) Breast cancer risk following radiotherapy for Hodgkin lymphoma: modification by other risk factors. Blood 106(10):3358–3365. https://doi.org/10.1182/blood-2005-04-1535
Hirano S, Kakinuma S, Amasaki Y, Nishimura M, Imaoka T, Fujimoto S, Hino O, Shimada Y (2013) Ikaros is a critical target during simultaneous exposure to X-rays and N-ethyl-N-nitrosourea in mouse T-cell lymphomagenesis. Int J Cancer 132(2):259–268. https://doi.org/10.1002/ijc.27668
Hirayama T (1981) Non-smoking wives of heavy smokers have a higher risk of lung cancer: a study from Japan. BMJ 282:183–185
Holmberg E, Holm LE, Lundell M, Mattsson A, Wallgren A, Karlsson P (2001) Excess breast cancer risk and the role of parity, age at first childbirth and exposure to radiation in infancy. Br J Cancer 85(3):362–366. https://doi.org/10.1054/bjoc.2001.1868
Holthusen H (1936) Erfahrungen über die Veträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 57:254–269
Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res 179(3):361–382. https://doi.org/10.1667/RR2892.1
Ianuzzi CM, Atencio DP, Green S, Stock RG, Rosenstein BS (2002) ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int J Radiat Oncol Biol Phys 52:606–613. https://doi.org/10.1016/S0360-3016(01)02684-0
ICRP (1991) 1990 Recommendations of the international commission on radiological protection. ICRP Publication 60. Ann. ICRP 21(1–3):1–201
ICRP (1998) genetic susceptibility to cancer. ICRP Publication 79. Ann ICRP 28(1–2):1–157
ICRP (2003) Biological effects after prenatal irradiation (Embryo and Fetus). ICRP Publication 90. Ann. ICRP 33(1–2):5–206
ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP 37 (2–4)
ICRP (2018) Proceedings of the fourth international symposium on the system of radiological protection. Ann ICRP 47(3/4)
ICRP report on computational phantoms and radiation transport, paediatric reference computational phantoms, in press
ICRP report on The Use of Dose Quantities in Radiological Protection, in press.
Imaizumi M, Usa T, Tominaga T, Neriishi K, Akahoshi M, Nakashima E, Ashizawa K, Hida A, Soda M, Fujiwara S et al (2006) Radiation dose-response relationships for thyroid nodules and autoimmune thyroid diseases in Hiroshima and Nagasaki atomic bomb survivors 55–58 years after radiation exposure. JAMA 295(9):1011–1022
Imaizumi M, Ohishi W, Nakashima E, Sera N, Neriishi K, Yamada M, Tatsukawa Y, Takahashi I, Fujiwara S, Sugino K et al (2015) Association of radiation dose with prevalence of thyroid nodules among atomic bomb survivors exposed in childhood (2007–2011). JAMA Intern Med 175(2):228–236
Imaizumi M, Ohishi W, Nakashima E, Sera N, Neriishi K, Yamada M, Tatsukawa Y, Takahashi I, Fujiwara S, Sugino K et al (2017) Thyroid dysfunction and autoimmune thyroid diseases among atomic-bomb survivors exposed in childhood. J Clin Endocrinol Metab 102(7):2516–2524. https://doi.org/10.1210/jc.2017-00102
Imaoka T, Nishimura M, Teramoto A, Nishimura Y, Ootawara M, Osada H, Kakinuma S, Maekawa A, Shimada Y (2005) Cooperative induction of rat mammary cancer by radiation and 1-methyl-1-nitrosourea via the oncogenic pathways involving c-Myc activation and H-ras mutation. Int J Cancer 115(2):187–193
Imaoka T, Nishimura M, Iizuka D, Nishimura Y, Ohmachi Y, Shimada Y (2011) Pre- and postpubertal irradiation induces mammary cancers with distinct expression of hormone receptors, ErbB ligands, and developmental genes in rats. Mol Carcinog 50(7):539–552. https://doi.org/10.1002/mc.20746
Imaoka T, Nishimura M, Daino K, Kokubo T, Doi K, Iizuka D, Nishimura Y, Okutani T, Takabatake M, Kakinuma S, Shimada Y (2013) Influence of age on the relative biological effectiveness of carbon ion radiation for induction of rat mammary carcinoma. Int J Radiat Oncol Biol Phys 85(4):1134–1140. https://doi.org/10.1016/j.ijrobp.2012.08.035
Imaoka T, Nishimura M, Doi K, Tani S, Ishikawa K, Yamashita S, Ushijima T, Imai T, Shimada Y (2014) Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis. Int J Cancer 134(7):1529–1538. https://doi.org/10.1002/ijc.28480
Imaoka T, Ishii N, Kawaguchi I, Homma-Takeda S, Doik K, Daino K, Nakanishi I, Tagami K, Kokubo T, Morioka T, Hosoki A, Takabatake M, Yoshinaga S (2016) Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. Int J Radiat Biol 92(6):289–301
Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Kokubo T, Doi K, Showler K, Nishimura Y, Moriyama H, Morioka T, Shimada Y, Kakinuma S (2017) Age modifies the effect of 2-MeV fast neutrons on rat mammary carcinogenesis. Radiat Res 188(4):419–425. https://doi.org/10.1667/RR14829.1
Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Nishimura Y, Kokubo T, Morioka T, Doi K, Shimada Y, Kakinuma S (2018a) Prominent dose-rate effect and its age dependence of rat mammary carcinogenesis induced by continuous Gamma-ray exposure. Radiat Res. https://doi.org/10.1667/RR15094.1
Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, ShimadaY KS (2018b) Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol. https://doi.org/10.1080/09553002.2018.1547848
Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Nishimura Y, Kokubo T, Morioka T, Doik K, Shimada Y, Kakinuma S (2019) Prominent dose-rate effect and its age dependence of rat mammary carcinogenesis induced by continuous gamma-ray exposure. Radiat Res 191(3):245–254. https://doi.org/10.1667/RR15094.1
Inoue T, Kokubo T, Daino K, Yanagihara H, Watanabe F, Tsuruoka C, Amasaki Y, Morioka T, Homma-Takeda S, Kobayashi T, Hino O, Shimada Y, Kakinuma S (2020) Interstitial chromosomal deletion of the Tsc2 locus is a signature for radiation-associated renal tumors in Eker rats. Cancer Sci. https://doi.org/10.1111/cas.14307
Ishida Y, Takabatake T, Kakinuma S, Doi K, Yamauchi K, Kaminishi M, Kito S, Ohta Y, Amasaki Y, Moritake H, Kokubo T, Nishimura M, Nishikawa T, Hino O, Shimada Y (2010) Genomic and gene expression signatures of radiation in medulloblastomas after low-dose irradiation in Ptch1 heterozygous mice. Carcinogenesis 31(9):1694–1701. https://doi.org/10.1093/carcin/bgq145
Ishikawa A, Suga T, Shoji Y, Kato S, Ohno T, Ishikawa H, Yoshinaga S, Ohara K, Ariga H, Nomura K, Shibamoto Y, Ishikawa K, Moritake T, Michikawa Y, Iwakawa M, Imai T (2011) Genetic variants of NPAT-ATM and AURKA are associated with an early adverse reaction in the gastrointestinal tract of patients with cervical cancer treated with pelvic radiation therapy. Int J Radiat Oncol Biol Phys 81(4):1144–1152
Ishikawa H, Tsuji H, Kamada T et al (2006a) Risk factors of late rectal bleeding after carbon ion therapy for prostate cancer. Int J Radiat Oncol Biol Phys 66:1084–1091
Ishikawa K, Koyama-Saegusa K, Otsuka Y, Ishikawa A, Kawai S, Yasuda K, Suga T, Michikawa Y, Suzuki M, Iwakawa M, Imai T (2006b) Gene expression profile changes correlating with radioresistance in human cell lines. Int J Radiat Oncol Biol Phys 65:234–245
Iwakawa M, Noda A, Ohta T, Ohira C, Lee R et al (2003) Different radiation susceptibility among five strains of mice detected by a skin Reaction. J Radiat Res 44(1):7–13. https://doi.org/10.1269/jrr.44.7
Iwakawa M, Noda S, Ohta T, Oohira C, Tanaka H, Tsuji A, Ishikawa A, Imai T (2004) Strain dependent differences in a histological study of CD44 and collagen fibers with an expression analysis of inflammatory response-related genes in irradiated murine lung. J Radiat Res 45:423–433
Iwakawa M, Noda S, Yamada S, Yamamoto N, Miyazawa Y, Yamazaki H, Kawakami Y, Matsui Y, Tsujii H, Mizoe J, Oda E, Fukunaga Y, Imai T (2006) Analysis of non-genetic risk factors for adverse skin reactions to radiotherapy among 284 breast cancer patients. Breast Cancer 13(3):300. https://doi.org/10.2325/jbcs.13.300
Joiner MC, van der Kogel AJ (eds) (2018) Basic clinical radiobiology, 5th edn. CRC Press Taylor and Francis Group, London
Kakinuma S, Nishimura M, Amasaki Y, Takada M, Yamauchi K, Sudo S, Shang Y, Doi K, Yoshinaga S, Shimada Y (2012) Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma. Mutat Res 737:43–50. https://doi.org/10.1016/j.mrfmmm.2012.06.001
Kakinuma S, Yamauchi K, Amasaki Y, Nishimura M, Shimada Y (2009) Low-dose radiation attenuates chemical mutagenesis in vivo. J Radiat Res 50(5):401–405
Kato S, Ohno T, Tsujii H et al (2006) Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 65:388–397
Kawaguchi I, Doi M, Kakinuma S, Shimada Y (2006) Combined effect of multiple carcinogens and synergy index. J Theor Biol 243(1):143–151. https://doi.org/10.1016/j.jtbi.2006.05.027
Kerns SL, Stock R, Stone N, Buckstein M, Shao Y, Campbell C, Rath L, De Ruysscher D, Lammering G, Hixson R, Cesaretti J, Terk M, Ostrer H, Rosenstein BS (2013) A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 85(1):e21–e28
Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, Pandey G, Bentzen SM, Janelsins M, Elliott RM, Pharoah PDP, Burnet NG, Dearnaley DP, Gulliford SL, Hall E, Sydes MR, Aguado-Barrera ME, Gómez-Caamaño A, Carballo AM, Peleteiro P, Lobato-Busto R, Stock R, Stone NN, Ostrer H, Usmani N, Singhal S, Tsuji H, Imai T, Saito S, Eeles R, DeRuyck K, Parliament M, Dunning AM, Vega A, Rosenstein BS, West CML (2019) Radiogenomics consortium genome-wide association study meta-analysis of late toxicity after prostate cancer radiotherapy. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djz075
Kokubo T, Kakinuma S, Kobayashi T, Watanabe F, Iritani R, Tateno K, Nishimura M, Nishikawa T, Hino O, Shimada Y (2010) Age dependence of radiation-induced renal cell carcinomas in an Eker rat model. Cancer Sci 101(3):616–623. https://doi.org/10.1111/j.1349-7006.2009.01456.x
Kusunoki Y, Hayashi T (2008) Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 84:1–14
Lewontin R (2001) The triple helix: gene, organism and environment. Harvard University Press, Boston
Li CI (2010) Chapter 2 Breast cancer biology and clinical characteristics. Breast cancer epidemiology. Springer, New York, pp 21–46
Liang X, Weigand LU, Schuster IG, Eppinger E, van der Griendt JC, Schub A, Leisegang M, Sommermeyer D, Anderl F, Han Y, Ellwart J, Moosmann A, Busch DH, Uckert W, Peschel C, Krackhardt AM (2010) A single TCR alpha-chain with dominant peptide recognition in the allorestricted HER2/neu-specific T cell repertoire. J Immunol 184:1617–1629
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85
Lim A, Trautmann L, Peyrat MA, Couedel C, Davodeau F, Romagné F, Kourilsky P, Bonneville M (2000) Frequent contribution of T cell clonotypes with public TCR features to the chronic response against a dominant EBV-derived epitope: application to direct detection of their molecular imprint on the human peripheral T cell repertoire. J Immunol 165:2001–2011
Lorat Y, Schanz S, Rübe CE (2016) Ultrastructural insights into the biological significance of persisting DNA damage foci after low doses of ionizing radiation. Clin Cancer Res 22(21):5300–5311
Matsuo K, Ito H, Yatabe Y, Hiraki A, Hirose K, Wakai K, Kosaka T, Suzuki T, Tajima K, Mitsudomi T (2007) Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Sci 98(1):96–101
Meier-Abt F, Bentires-Alj M, Rochlitz C (2015) Breast cancer prevention: lessons to be learned from mechanisms of early pregnancy-mediated breast cancer protection. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-2717
Michikawa Y, Sugahara K, Suga T, Ohtsuka Y, Ishikawa K, Ishikawa A, Shiomi N, Shiomi T, Iwakawa M, Imai T (2008a) In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level. Anal Biochem 383:151–158
Michikawa Y, Suga T, Ohtsuka Y, Matsumoto I, Ishikawa A, Ishikawa K, Iwakawa M, Imai T (2008b) Visible genotype sensor array. Sensors 8:2722–2735
Miconnet I, Marrau A, Farina A, Taffé P, Vigano S, Harari A, Pantaleo G (2011) Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure. J Immunol 186:7039–7049
Midha A, Dearden S, McCormack R (2015) EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res 5(9):2892–2911
Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, Burrows JM, Purcell AW, Kjer-Nielsen L, Rossjohn J, Burrows SR, McCluskey J (2005) CTL recognition of a bulged viral peptide involves biased TCR selection. J Immunol 175:3826–3834
Miyoshi-Imamura T, Kakinuma S, Kaminishi M, Okamoto M, Takabatake T, Nishimura Y, Imaoka T, Nishimura M, Murakami-Murofushi K, Shimada Y (2010) Unique characteristics of radiation-induced apoptosis in the postnatally developing small intestine and colon of mice. Radiat Res 173(3):310–318. https://doi.org/10.1667/RR1905.1
Morioka T, Miyoshi-Imamura T, Blyth BJ, Kaminishi M, Kokubo T, Nishimura M, Kito S, Tokairin Y, Tani S, Murakami-Murofushi K, Yoshimi N, Shimada Y, Kakinuma S (2015) Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice. Cancer Sci 106(3):217–226. https://doi.org/10.1111/cas.12591
Morimoto I, Yoshimoto Y, Sato K, Hamilton HB, Kawamoto S, Nagataki IMS (1987) Serum TSH, thyroglobulin, and thyroidal disorders in atomic bomb survivors exposed in youth: 30-year follow-up study. J Nucl Med 28(7):1115–1122
Morton LM, Sampson JN, Armstrong GT, Chen TH, Hudson MM, Karlins E, Dagnall CL, Li SA, Wilson CL, Srivastava DK, Liu W, Kang G, Oeffinger KC, Henderson TO, Moskowitz CS, Gibson TM, Merino DM, Wong JR, Hammond S, Neglia JP, Turcotte LM, Miller J, Bowen L, Wheeler WA, Leisenring WM, Whitton JA, Burdette L, Chung C, Hicks BD, Jones K, Machiela MJ, Vogt A, Wang Z, Yeager M, Neale G, Lear M, Strong LC, Yasui Y, Stovall M, Weathers RE, Smith SA, Howell R, Davies SM, Radloff GA, Onel K, Berrington de González A, Inskip PD, Rajaraman P, Fraumeni JF Jr, Bhatia S, Chanock SJ, Tucker MA, Robison LL (2017) Genome-wide association study to identify susceptibility loci that modify radiation-related risk for breast cancer after childhood cancer. J Natl Cancer Inst 109(11):058. https://doi.org/10.1093/jnci/djx058
Mumbrekar KD, Bola Sadashiva SR, Kabekkodu SP, Fernandes DJ, Vadhiraja BM, Suga T, Shoji Y, Nakayama F, Imai T, Satyamoorthy K (2017) Genetic variants in CD44 and MAT1A confer susceptibility to acute skin reaction in breast cancer patients undergoing radiation therapy. Int J Radiat Oncol Biol Phys 97:118–127
Nagataki S, Shibata Y, Inoue S, Yokoyama N, Izumi M, Shimaoka K (1994) Thyroid diseases among atomic bomb survivors in Nagasaki. JAMA 272(5):364–370
Nakano M et al (2007) Chromosome aberrations do not persist in the lymphocytes or bone marrow cells of mice irradiated in utero or soon after birth. Radiat Res 167:693–702
Nakano M et al (2014) Fetal irradiation of rats induces persistent translocations in mammary epithelial cells similar to the level after adult irradiation, but not in hematolymphoid cells. Radiat Res 181:172–176
Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174(11):7446–7452
NCRP (2015) Health effects of low doses of radiation: perspectives on integrating radiation biology and epidemiology (NCRP commentary No. 24). National Council on Radiation Protection and Measurements, Bethesda
Noda S, Iwakawa M, Ohta T, Iwata M, Yang M, Goto M, Tanaka H, Harada Y, Imai T (2005) Inter-strain variance in late phase of erythematous reaction or leg contracture after local irradiation among three strains of mice. Cancer Detect Rev 29:376–382
Okamoto M, Yonekawa H (2005) Intestinal tumorigenesis in Min mice is enhanced by X-irradiation in an age-dependent manner. J Radiat Res 46(1):83–91
Okonogi N, Suzuki Y, Sato H et al (2008a) Combination therapy of intravenously injected microglia and radiation therapy prolongs survival in a rat model of spontaneous malignant glioma. Int J Radiat Oncol Biol Phys 102(3):601–608
Okonogi N, Fukahori M, Wakatsuki M et al (2008b) Dose constraints in the rectum and bladder following carbon-ion radiotherapy for uterus carcinoma: a retrospective pooled analysis. Radiat Oncol 13(1):119. https://doi.org/10.1186/s13014-018-1061-7
Onishi M, Okonogi N, Oike T et al (2018) (2018) High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells. J Radiat Res 59(5):541–546
Ohtaki K et al (2004) Human fetuses do not register chromosome damage inflicted by radiation exposure in lymphoid precursor cells except for a small but significant effect at low doses. Radiat Res 161:373–379
Opstal-van Winden AWJ, de Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, Janus CPM, Krol ADG, van der Baan FH, De Bruin ML, van Eggermond AM, Dennis J, Anton-Culver H, Haiman CA, Sawyer EJ, Cox A, Devilee P, Hooning MJ, Peto J, Couch FJ, Pharoah P, Orr N, Easton DF, Aleman BMP, Strong LC, Bhatia S, Cooke R, Robison LL, Swerdlow AJ, van Leeuwen FE (2019) Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood 133(10):1130–1139. https://doi.org/10.1182/blood-2018-07-862607
Parker LN, Belsky JL, Mandai T, Blot WJ, Kawate R (1973) Serum thyrotropin level and goiter in relation to childhood exposure to atomic radiation. J Clin Endocrinol Metab 37(5):797–804
Pereira S et al (2018) Fast and binary assay for predicting radiosensitivity based on the theory of ATM nucleo-shuttling: development, validation, and performance. Int J Radiat Oncol Biol Phys 100:353–360
Peto J (2001) Cancer epidemiology in the last century and the next decade. Nature 411(6835):390–395. https://doi.org/10.1038/35077256
Pollard JM, Gatti RA (2009) Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 74:1323–1331
Pomerantz MM, Freedman ML (2011) The genetics of cancer risk. Cancer J 17:416–422. https://doi.org/10.1097/PPO.0b013e31823e5387
Preston DL, Mattsson A, Holmberg E et al (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 158(2):220–235
Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64
Puck TT, Marcus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:273–284
Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111:13139–13144
Rajaraman P, Hauptmann M, Bouffler S, Wojcik A (2018) Human individual radiation sensitivity and prospects for prediction. Ann ICRP 47(3–4):126–141. https://doi.org/10.1177/0146645318764091
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM (2016) Ataxia telangiectasia: a review. Orphanet J Rare Dis 11:159
Rogacev KS, Seiler S, Zawada AM, Reichart B, Herath E, Roth D, Ulrich C, Fliser D, Heine GH (2011) CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 32:84–92
Ronckers CM, Erdmann CA, Land CE (2005) Radiation and breast cancer: a review of current evidence. Breast Cancer Res 7(1):21–32
Rosenstein BS et al (2004) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89:709–713
Rübe CE, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, Rübe C (2008a) DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 14(20):6546–6555
Rübe CE, Dong X, Kühne M, Fricke A, Kaestner L, Lipp P, Rübe C (2008b) DNA double-strand break rejoining in complex normal tissues. Int J Radiat Oncol Biol Phys 72(4):1180–1187
Rübe CE, Fricke A, Wendorf J, Stützel A, Kühne M, Ong MF, Lipp P, Rübe C (2010a) Accumulation of DNA double-strand breaks in normal tissues after fractionated irradiation. Int J Radiat Oncol Biol Phys 76(4):1206–1213
Rübe CE, Fricke A, Schneider R, Simon K, Kühne M, Fleckenstein J, Gräber S, Graf N, Rübe C (2010b) DNA repair alterations in children with pediatric malignancies: novel opportunities to identify patients at risk for high-grade toxicities. Int J Radiat Oncol Biol Phys 78(2):359–369
Rühm W, Bottollier-Depois JF, Gilvin P, Harrison R, Knezevic Z, Lopez MA, Tanner R, Vargas A, Woda C (2018) The work programme of EURADOS on internal and external dosimetry. Ann ICRP 47(3–4):20–34
Safwat A, Bentzen SM, Nielsen OS, Mahmoud HK, Overgaard J (1996) Repair capacity of mouse lung after total body irradiation alone or combined with cyclophosphamide. Radiother Oncol 40:249–257
Sakata R, McGale P, Grant EJ, Ozasa K, Peto R, Darby SC (2012) Impact of smoking on overall mortality and life expectancy in Japanese smokers. BMJ 345:e7093
Sakata R, Preston DL, Brenner AV, Sugiyama H, Grant EJ, Rajaraman P, Sadakane A, Utada M, Benjamin F, Cahoon EK, Mabuchi K, Ozasa K (2019) Radiation-related risk of cancers of the upper digestive tract among Japanese atomic bomb survivors. Radiat Res 192(3):331–344
Sasaki S (1991) Influence of the age of mice at exposure to radiation on life-shortening and carcinogenesis. J Radiat Res 32(Suppl 2):73–85
Schuler N, Palm J, Kaiser M, Betten D, Furtwängler R, Rübe C, Graf N, Rübe CE (2014) DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies. PLoS ONE 9(3):e91319
Schuler N, Palm J, Schmitz S, Lorat Y, Rübe CE (2017) Increasing genomic instability during cancer therapy in a patient with Li-Fraumeni syndrome. Clin Transl Radiat Oncol 7:71–78
Seibold P, Behrens S, Schmezer P, Helmbold I, Barnett G, Coles C, Yarnold J, Talbot CJ, Imai T, Azria D, Koch CA, Dunning AM, Burnet N, Bliss JM, Symonds RP, Rattay T, Suga T, Kerns SL, Bourgier C, Vallis KA, Sautter-Bihl ML, Claßen J, Debus J, Schnabel T, Rosenstein BS, Wenz F, West CM, Popanda O, Chang-Claude J (2015) XRCC1 polymorphism associated with late toxicity after radiation therapy in breast cancer patients. Int J Radiat Oncol Biol Phys 92:1084–1092
Shang Y, Kakinuma S, Yamauchi K, Morioka T, Kokubo T, Tani S, Takabatake T, Kataoka Y, Shimada Y (2014) Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int J Cancer 135(5):1038–1047. https://doi.org/10.1002/ijc.28751
Shang Y, Kakinuma S, Yamauchi K, Morioka T, Kokubo T, Tani S, Takabatake T, Kataoka Y,
Shang Y, Sawa Y, Blyth BJ, Tsuruoka C, Nogawa H, Shimada Y, Kakinuma S (2017) Radiation exposure enhances hepatocyte proliferation in neonatal mice but not in adult mice. Radiat Res 188(2):235–241. https://doi.org/10.1667/RR14563.1
Shibamoto Y et al (2011) Single nucleotide polymorphisms associated with risk of adverse skin reactions to radiation in patients undergoing breast-conserving therapy: single-institution analysis. Int J Radiat Oncol Biol Phys 81(2):S757–S758
Shimada Y, Yasukawa-Barnes J, Kim RY, Gould MN, Clifton KH (1994) Age and radiation sensitivity of rat mammary clonogenic cells. Radiat Res 137(1):118–123
Shimada Y, Nishimura M, Amasaki Y, Shang Y, Yamauchi K, Sawai T, Hirano S, Imaoka T, Yamada Y, Takabatake T, Kakinuma S (2011) Interaction of low dose radiation and other factors. Health Phys 100(3):278–279
Socolow EL, Hashizume A, Neriishi S, Niitani R (1963) Thyroid carcinoma in man after exposure to ionizing radiation. A summary of the findings in Hiroshima and Nagasaki. N Engl J Med 268:406–410
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. https://doi.org/10.1073/pnas.191367098
Sroussi HY, Epstein JB, Bensadoun RJ et al (2017) Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med 6:2918–2931
Stewart A, Webb J, Hewitt D (1958) A survey of childhood malignancies. Br Med J 1:1495–1508
Suga T, Ishikawa A, Kohda M, Otsuka Y, Yamada S, Yamamoto N, Shibamoto Y, Ogawa Y, Nomura K, Sho K, Omura M, Sekiguchi K, Kikuchi Y, Michikawa Y, Noda S, Sagara M, Ohashi J, Yoshinaga S, Mizoe J, Tsujii H, Iwakawa M, Imai T (2007) Haplotype-based analysis of genes associated with risk of adverse skin reactions after radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys 69:685–693
Suga T, Iwakawa M, Tsuji H, Ishikawa H, Oda E, Noda S, Otsuka Y, Ishikawa A, Ishikawa K, Shimazaki J, Mizoe JE, Tsujii H, Imai T (2008) Influence of multiple genetic polymorphisms on genitourinary morbidity after carbon ion radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 72:808–813
Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95(4):290–299
Sunaoshi M, Amasaki Y, Hirano-Sakairi S, Blyth BJ, Morioka T, Kaminishi M, Shang Y, Nishimura M, Shimada Y, Tachibana A, Kakinuma S (2015) The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas. Mutat Res 779:58–67. https://doi.org/10.1016/j.mrfmmm.2015.06.004
Takabatake M, Daino K, Imaoka T, Blyth BJ, Kokubo T, Nishimura Y, Showler K, Hosoki A, Moriyama H, Nishimura M, Kakinuma S, Fukushi M, Shimada Y (2018) Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Sci Rep 8(1):14325. https://doi.org/10.1038/s41598-018-32406-1
Tani S, Blyth BJ, Shang Y, Morioka T, Kakinuma S, Shimada Y (2016) A multi-stage carcinogenesis model to investigate caloric restriction as a potential tool for post-irradiation mitigation of cancer risk. J Cancer Prev 21(2):115–120. https://doi.org/10.15430/JCP.2016.21.2.115
Thacker J (1994) Cellular radiosensitivity in ataxia-telangiectasia. Int J Radiat Biol 66(6 Suppl):S87–96
Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izume S, Pleston DL (2005) Cancer incidence in atomic bomb survivors. Part II: solid tumors, 1958–1987. Radiat Res 137:S17–S67
Tsuji AB, Sudo H, Sugyo A, Otsuki M, Miyagishi M, Taira K, Imai T, Harada YN (2005) A fast, simple method for screening radiation susceptibility genes by RNA interference. Biochem Biophys Res Commun 333:1370–1377
Tsuruoka C, Blyth BJ, Morioka T, Kaminishi M, Shinagawa M, Shimada Y, Kakinuma S (2016) Sensitive detection of radiation-induced medulloblastomas after acute or protracted gamma-ray exposures in Ptch1 heterozygous mice using a radiation-specific molecular signature. Radiat Res 186(4):407–414
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2013) Sources, effects and risks of ionizing radiation. United Nations, New York
Upton AC et al (1960) Influence of age at time of irradiation on induction of leukemia and ovarian tumors in RF mice. Proc Soc Exp Biol Med 104:769–772
Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Sadakane A, Grant EJ, Cahoon EK, Ozasa K, Mabuchi K (2019) Radiation risks of uterine cancer in atomic bomb Survivors: 1958–2009. JNCI Cancer Spectrum 2:pky081
van der Burg M, Ijspeert H, Verkaik NS et al (2009) A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Investig 119(1):91–98
Vogin G, Bastogne T, Bodgi L, Gillet-Daubin J, Canet A, Pereira S, Foray N (2018) The phosphorylated ATM immunofluorescence assay: a high-performance radiosensitivity assay to predict postradiation therapy overreactions. Int J Radiat Oncol Biol Phys 101:690–693
Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M et al (2007) Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol Genet 16(12):1478–1487
West C, Rosenstein BS (2010) Establishment of a radiogenomics consortium. Radiother Oncol 94:117–118
Wojcik A, Bouffler S, Hauptmann M, Rajaraman P (2018) Considerations on the use of the terms radiosensitivity and radiosusceptibility. J Radiol Prot 38(3):N25–N29. https://doi.org/10.1088/1361-6498/aacb03
Yamada Y, Iwata KI, Blyth BJ, Doi K, Morioka T, Daino K, Nishimura M, Kakinuma S, Shimada Y (2017) Effect of age at exposure on the incidence of lung and mammary cancer after thoracic X-ray irradiation in wistar rats. Radiat Res 187(2):210–220
Yamauchi K, Kakinuma S, Sudo S, Kito S, Ohta Y, Nohmi T, Masumura K, Nishimura M, Shimada Y (2008) Differential effects of low- and high-dose X-rays on N-ethyl-N-nitrosourea-induced mutagenesis in thymocytes of B6C3F1 gpt-delta mice. Mutat Res 640(1–2):27–37. https://doi.org/10.1016/j.mrfmmm.2007.12.001
Yoshida K, Inoue T, Nojima K, Hirabayashi Y, Sado T (1997) Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc Natl Acad Sci USA 94(6):2615–2619
Yoshida K, Cologne JB, Cordova K, Misumi M, Yamaoka M, Kyoizumi S, Hayashi T, Robins H, Kusunoki Y (2017) Aging-related changes in human T-cell repertoire over 20 years delineated by deep sequencing of peripheral T-cell receptors. Exp Gerontol 96:29–37. https://doi.org/10.1016/j.exger.2017.05.015
Yoshida K, French B, Yoshida N, Hida A, Ohishi W, Kusunoki Y (2019) Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomic-bomb survivors. Br J Haematol 185(1):107–115. https://doi.org/10.1111/bjh.15750
Yoshimoto Y, Suzuki Y, Mimura K et al (2014) Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model. PLoS ONE 9(3):e92572
Yoshimoto Y, Oike T, Okonogi N et al (2015) Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res 56(3):509–514
Acknowledgements
The workshop participants and members of ICRP Task Group 111 thank Christopher Clement, the ICRP Scientific Secretary for his support and participation at these workshops and his review and comments on this article. The Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan is a public interest foundation funded by the Japanese Ministry of Health, Labour and Welfare (MHLW) and the US Department of Energy (DOE). The research was also funded in part through DOE award DE-HS0000031 to the National Academy of Sciences and contract HHSN261201400009C through the U. S. National Cancer Institute (NCI). The views of the authors do not necessarily reflect those of the two governments. The study by A Sadakane is based on a collaboration with researchers outside RERF, Dr. Shuji Yonehara of JA Onomichi General Hospital, Dr. Takashi Nishisaka of Hiroshima Prefectural Hospital, Dr. Masahiro Nakashima of Nagasaki University, Dr. Dale L. Preston of HiroSoft International Corporation, and Dr. Kiyohiko Mabuchi, Dr. Xiaohong R. Yang, and Dr. Amy Berrington de Gonzalez of the US National Cancer Institute. This study is supported by the contract with US NCI (HHSN261201400009C) and by JSPS KAKENHI Grant Number JP23590839, in addition to the usual funds from Japanese and US governments.
Author information
Authors and Affiliations
Contributions
Human Individual Radiation Sensitivity and Prospects for Prediction (AW); Longitudinal analyses of clinical data and biosamples (KY); Fetal hematopoietic stem cells are not at all sensitive to radiation for induction of persisting chromosome aberrations. How are the damaged cells eliminated? (KH); Recent Animal Studies in QST-NIRS on Individual radiation-related cancer risk (TI, MN, SK, YS); Age-dependence of breast cancer risk (AB); Intrinsic subtypes of radiation-associated breast cancers among female atomic bomb survivors (AS); Thyroid diseases following childhood exposure (MI); Upper gastrointestinal tract cancer among LSS participants (RS); Lifestyle-related Cancer Risk: Smoking and Cancer (KO); Genetic Variations in Individual Radiation Therapy Adverse Response (TI); Exceptional responders versus tissue effects in radiation therapy (NO, TK); Radiosensitivity and radiotherapy (MB); Normal tissue responses after exposure to low doses of ionizing radiation (CER).
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The International Commission of Radiological Protection (ICRP) has convened Task Group 111 to review the current science relevant to the topic of individual response to radiation. To begin this effort, ICRP held a series of workshops in December of 2018 with Japanese scientists at the National Institutes for Quantum and Radiological Science, and Technology (NIRS-QST) in Chiba, the Radiation Effects Research Foundation (RERF) in Hiroshima, and the National Cancer Centre in Tokyo to discuss key questions and issues raised. This paper provides summaries of the workshop contributions.
Rights and permissions
About this article
Cite this article
Applegate, K.E., Rühm, W., Wojcik, A. et al. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. Radiat Environ Biophys 59, 185–209 (2020). https://doi.org/10.1007/s00411-020-00837-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00411-020-00837-y