Skip to main content
Log in

Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM−1. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The WLM is a historical unit of potential alpha energy exposure: 1 WLM = 3.534 mJ h m−3.

  2. The aerodynamic shape factor is a dimensionless constant used to relate the physical forces acting upon an irregularly shaped particle moving in air relative to a spherical particle with equivalent volume diameter.

  3. The hygroscopic growth factor is defined as the ratio of the saturation diameter of a hygroscopic particle to its initial dry diameter.

  4. The potential alpha energy concentration is defined as the concentration of any mixture of short-lived radon progeny in air in terms of alpha energy released during complete decay through 210Pb.

  5. The equilibrium factor is the ratio of the equilibrium-equivalent activity concentration of the radon progeny and the radon activity concentration.

References

  • Asgharian B, Hofmann W, Miller FJ (2001) Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. J Aerosol Sci 32:817–823

    Article  Google Scholar 

  • Chameaud J, Masse R, Lafuma J (1984) Influence of radon daughter exposure at low doses on occurrence of lung cancer in rats. Radiat Prot Dosimetry 7:385–388

    Google Scholar 

  • Cheng YS, Hansen GK, Su YF, Yeh HC, Morgan KT (1990) Deposition of ultrafine aerosols in rat nasal molds. Toxicol Appl Pharmacol 106:222–233

    Article  Google Scholar 

  • Cohen BS, Asgharian B (1990) Deposition of ultrafine particles in upper airways. J Aerosol Sci 21:789–797

    Article  Google Scholar 

  • Costa DL, Tepper J (1988) Approaches to lung function assessment in small mammals. In: Gardner DE, Crapo JD, Massaro EJ (eds) Toxicology of the lung. Raven Press, New York, pp 147–174

    Google Scholar 

  • Cross FT (1987) Health effects. In: Cothern CR, Smith JE (eds) Environmental radon. Plenum Press, New York, pp 215–248

    Chapter  Google Scholar 

  • Cross FT (1988a) Radon inhalation studies in animals. Radiat Prot Dosimetry 24:463–466

    Google Scholar 

  • Cross FT (1988b) Radon inhalation studies in animals. Report DOE/ER-0396, US Department of Energy, Washington, DC

  • Cross FT, Monchaux G (1999) Risk assessment of radon health effects from experimental animal studies. A joint review of PNNL (USA) and CEA-COGEMA (France) data. In: Inaba J, Yonehara H, Doim M (eds) Indoor radon exposure and its health consequences. Quest for the true story of environmental radon and lung cancer. Kodasha Scientific Limited, Tokyo, pp 85–105

    Google Scholar 

  • Cross FT, Palmer RF, Dagle GE, Busch RH, Buschbom RL (1984) Influence of radon daughter exposure rate, unattached fraction, and disequilibrium on occurrence of lung tumors. Radiat Prot Dosimetry 7:381–384

    Google Scholar 

  • Dagle JE, Cross FT, Gies RA (1992) Morphology of respiratory tract lesions in rats exposed to radon progeny. In: Cross FT (ed) Indoor radon and lung cancer: Reality or myth?. Battelle Press, Richland, pp 659–675

    Google Scholar 

  • Darby S, Hill D, Deo H, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Falk R, Farchi S, Figueiras A, Hakama M, Heid I, Hunter N, Kreienbrock L, Kreuzer M, Largarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruosleenoja E, Schaffrath Rosario A, Tirmarche M, Tomasek L, Whitley E, Wichmann HH, Doll R (2006) Residential radon and lung cancer—detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiological studies in Europe. Scand J Work Environ Health 32(Suppl. 1):1–84

    Google Scholar 

  • Dua SK, Hopke PK (1996) Hygroscopic growth of assorted indoor aerosols. Aerosol Sci Technol 24:151–160

    Article  Google Scholar 

  • Ellett WH, Nelson NS (1985) Epidemiology and risk assessment: testing models for radon-induced lung cancer. In: Gammage RB, Kaye SV (eds) Indoor air and health. Lewis Publishers, Chelsea, pp 79–107

    Google Scholar 

  • Fakir H, Hofmann W, Caswell RS (2008) Radon progeny microdosimetry in human and rat bronchial airways. The effect of crossfire from the alveolar region. Radiat Prot Dosimetry 130:149–161

    Article  Google Scholar 

  • Felicetti SA, Wolff RK, Muggenburg BA (1981) Comparison of tracheal mucous transport in rats, guinea pigs, rabbits, and dogs. J Appl Physiol 51:1612–1617

    Google Scholar 

  • Gilbert ES, Cross FT, Dagle GE (1996) Analysis of lung tumor risk in rats exposed to radon. Radiat Res 145:350–360

    Article  Google Scholar 

  • Harley NH (1988) Radon daughter dosimetry in the rat tracheobronchial tree. Radiat Prot Dosimetry 24:457–461

    Google Scholar 

  • Harley NH, Chen J, Chittaporn P, Sorimachi A, Tokonami S (2012) Long term measurements of indoor radon equilibrium factor. Health Phys 102:459–462

    Article  Google Scholar 

  • Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 µm. J Aerosol Sci 17:811–825

    Article  Google Scholar 

  • Hofmann W (1998) Overview of radon lung dosimetry. Radiat Prot Dosimetry 79:229–236

    Article  Google Scholar 

  • Hofmann W (2011) Modelling inhaled particle deposition in the human lung—a review. J Aerosol Sci 42:693–724

    Article  Google Scholar 

  • Hofmann W, Asgharian B (2003) The effect of lung structure on mucociliary clearance and particle retention in human and rat lungs. Toxicol Res 73:448–456

    Google Scholar 

  • Hofmann W, Koblinger L (1990) Monte Carlo modelling of aerosol deposition in human lungs. Part II: deposition fractions and their sensitivity to parameter variations. J Aerosol Sci 21:675–688

    Article  Google Scholar 

  • Hofmann W, Winkler-Heil R (2011) Radon lung dosimetry models. Radiat Prot Dosimetry 145:206–212

    Article  Google Scholar 

  • Hofmann W, Ménache MG, Graham RC (1993) Radon progeny dosimetry in the rat lung. Health Phys 64:279–290

    Article  Google Scholar 

  • Hofmann W, Bergmann R, Koblinger L (1999) Characterization of local particle deposition patterns in human and rat lungs by different morphometric parameters. J Aerosol Sci 30:651–667

    Article  Google Scholar 

  • Hofmann W, Ménache MG, Crawford-Brown DJ, Caswell RS, Karam LR (2000) Modeling energy deposition and cellular radiation effects in human bronchial epithelium by radon progeny alpha particles. Health Phys 78:377–398

    Article  Google Scholar 

  • Hofmann W, Winkler-Heil R, Hussain M (2010) Modeling intersubject variability of bronchial doses for inhaled radon progeny. Health Phys 99:523–531

    Article  Google Scholar 

  • Ingham DB (1975) Diffusion of aerosols from a stream flowing through a cylindrical tube. J Aerosol Sci 6:125–132

    Article  Google Scholar 

  • International Commission on Radiological Protection (ICRP) (1994) The human respiratory tract model for radiological protection. ICRP Publication 66. Elsevier, Oxford

    Google Scholar 

  • International Commission on Radiological Protection (ICRP) (2002) Guide to the practical application of the ICRP Human Respiratory Tract Model: ICRP supporting guidance, vol 32(1–2). ICRP, Pergamon Press, Oxford

    Google Scholar 

  • Kelly JT, Kimball JS, Asgharian B (2001) Deposition of fine and coarse aerosols in a rat nasal mold. Inhal Toxicol 13:577–588

    Article  Google Scholar 

  • Koblinger L, Hofmann W (1985) Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol 30:541–556

    Article  Google Scholar 

  • Koblinger L, Hofmann W (1988) Stochastic morphological model of the rat lung. Anat Rec 221:533–539

    Article  Google Scholar 

  • Koblinger L, Hofmann W (1990) Monte Carlo modelling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci 21:661–674

    Article  Google Scholar 

  • Koblinger L, Hofmann W (1995) Aerosol inhalation in the rat lung. Part II: theoretical predictions of particle deposition patterns. J Aerosol Med 8:21–32

    Article  Google Scholar 

  • Koblinger L, Hofmann W, Graham RC, Mercer RR (1995) Aerosol inhalation in the rat lung. Part I: analysis of the rat acinus morphometry and construction of a stochastic lung model. J Aerosol Med 8:7–19

    Article  Google Scholar 

  • Li W, Hopke PK (1993) Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol 19:305–316

    Article  Google Scholar 

  • Marsh JW, Bailey MR (2013) A review of lung-to-blood absorption rates for radon progeny. Radiat Prot Dosimetry 157:499–514

    Article  Google Scholar 

  • Marsh JW, Birchall A, Butterweck G, Dorrian MD, Huet C, Ortega X, Reineking A, Tymen G, Schuler C, Vargas A, Vezzu G, Wendt J (2002) Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home. Radiat Prot Dosimetry 102:229–248

    Article  Google Scholar 

  • Marsh JW, Birchall A, Davis K (2005) Comparative dosimetry in homes and mines: estimation of K-factors. In: Proceedings seventh international symposium—the natural radiation environment. Elsevier, Amsterdam, pp 290–298

  • Marsh JW, Bessa Y, Birchall A, Blanchardon E, Hofmann W, Nosske D, Tomasek L (2008) Dosimetric models used in the alpha-risk project to quantify exposure of uranium miners to radon gas and its progeny. Radiat Prot Dosimetry 130:101–106

    Article  Google Scholar 

  • McDowell EM, McLaughlin JS, Merenyi DK, Kieffer RF, Harris CC, Trump BF (1978) The respiratory epithelium. V. Histogenesis of lung carcinomas in the human lung. J Natl Cancer Inst 61:587–606

    Google Scholar 

  • Ménache MG, Miller FJ, Raabe OG (1995) Particle inhalability curves for humans and small laboratory animals. Ann Occup Hyg 39:317–328

    Google Scholar 

  • Mercer RR, Crapo JD (1987) Three-dimensional reconstruction of the rat acinus. J Appl Physiol 63:785–794

    Google Scholar 

  • Mercer RR, Russell ML, Crapo JD (1991) Radon dosimetry based on the depth distribution of’ nuclei in human and rat lungs. Health Phys 61:117–130

    Article  Google Scholar 

  • Monchaux G (2004) Risk of fatal versus incidental lung cancer in radon-exposed rats: a reanalysis of the French data. Arch Oncol 12:7–12

    Article  Google Scholar 

  • Monchaux G, Morlier JP (2002) Influence of exposure rate on radon-induced lung cancer in rats. J Radiol Prot 22:A81–A87

    Article  Google Scholar 

  • Monchaux G, Morlier JP, Morin M, Chameaud J, Lafuma J, Masse R (1994) Carcinogenic and cocarcinogenic effects of radon and radon daughters in rats. Environ Health Perspect 102:64–73

    Article  Google Scholar 

  • Morlier JP, Morin M, Monchaux G, Fritsch P, Pineau JF, Chameaud J, Lafuma J (1994) Lung cancer incidence after exposure of rats to low doses of radon: influence of dose rate. Radiat Prot Dosimetry 56:93–97

    Google Scholar 

  • National Council on Radiation Protection and Measurements (NCRP) (1984) Evaluation of occupational and environmental exposures of radon and radon daughters in the United States. NCRP Report No. 78, NCRP, Bethesda, MD

  • National Research Council (NRC) (1991) Comparative dosimetry of radon in mines and homes. National Academy Press, Washington

    Google Scholar 

  • National Research Council (NRC) (1999) Committee on the biological effects of’ ionizing radiation. BEIR VI. Health effects of exposure to radon. National Academy Press, Washington

    Google Scholar 

  • Raabe OG, Yeh HC, Schum GM, Phalen RF (1976) Tracheobronchial geometry: human, dog, rat, hamster. Report LF-53. Lovelace Foundation, Albuquerque NM

  • Raabe OG, Al-Bayati MA, Teague SV, Rasolt A (1988) Regional deposition of inhaled monodisperse coarse and fine aerosol particles in small laboratory animals. Ann Occup Hyg 32(Suppl 1):53–63

    Article  Google Scholar 

  • Reineking A, Porstendörfer J (1988) Activity size distributions of the short-lived radon decay products and their influence on the deposition probability in the human lung. J Aerosol Sci 19:1331–1337

    Article  Google Scholar 

  • Saccomanno G, Archer VE, Saunders RP, James LA, Beckler PA (1964) Lung cancer of uranium miners on the Colorado plateau. Health Phys 10:1195–1201

    Article  Google Scholar 

  • Sakoda A, Ishimori Y, Fukao K, Yamaoka K, Kataoka T, Mitsunobu F (2012) Lung dosimetry of inhaled radon progeny in mice. Radiat Environ Biophys 51:425–442

    Article  Google Scholar 

  • Sakoda A, Ishimori Y, Yamaoka K, Kataoka T, Mitsunobu F (2013) Absorbed doses of lungs retained in airway lumens of mice and rats. Radiat Environ Biophys 52:389–395

    Article  Google Scholar 

  • Takezawa J, Miller FJ, O’Neil JJ (1980) Single-breath diffusing capacity and lung volumes in small laboratory mammals. J Appl Physiol Respir Environ Exerc Physiol 48:1052–1059

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2006) Effects of ionizing radiation, UNSCEAR 2006 report to the general assembly, volume II, Annex E, sources-to-effects assessment for radon in workplaces and homes. United Nations, New York

  • Winkler-Heil R, Hofmann W (2005) Stochastic radon lung dosimetry—modeling variability of bronchial cellular doses. In: Proceedings seventh international symposium—the natural radiation environment. Elsevier, Amsterdam, pp 624–633

  • Winkler-Heil R, Hofmann W, Marsh J, Birchall A (2007) Comparison of radon lung dosimetry models for the estimation of dose uncertainties. Radiat Prot Dosimetry 127:27–30

    Article  Google Scholar 

  • Yeh HC, Schum GM (1980) Model of human lung airways and their application to inhaled particle deposition. Bull Math Biol 42:461–480

    Article  MATH  Google Scholar 

  • Yeh HC, Schum GM, Duggan MT (1979) Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat Rec 195:483–492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Winkler-Heil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler-Heil, R., Hussain, M. & Hofmann, W. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment. Radiat Environ Biophys 54, 225–241 (2015). https://doi.org/10.1007/s00411-015-0591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-015-0591-8

Keywords

Navigation